Analysis of the Lennard-Jones-38 stochastic network

Maria Cameron

Joint work with E. Vanden-Eijnden

Lennard-Jones clusters

Pair potential: $V(r) = 4e(r^{-12} - r^{-6})$

- 1. Wales, D. J., Energy landscapes: calculating pathways and rates, International Review in Chemical Physics, 25, 1-2, 237-282 (2006)
- 2. Wales's D. J. website contains the database for the Lennard-Jones-38 cluster:

<http://www-wales.ch.cam.ac.uk/examples/PATHSAMPLE/>

- 3. Wales, D. J. and Doye, J. P. K. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters containing up to 110 Atoms. J. Phys. Chem. A 101, 5111–5116 (1997)
- 4. Doye, J. P. K., Miller, M. A. and Wales, D. J. The doublefunnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110, 6896–6906, (1999)

D. Wales's LJ₃₈ network

Double-funnel of LJ38

The second lowest minimum: incomplete icosahedron point group C_{5v}

The lowest minimum: face-centered cubic truncated octahedron, point group Oh

Mandelshtam,V.A.and Frantsuzov,P.A.,

Multiple structural transformations in Lennard - Jones clusters: Generic versus size-specific behavior,

J. Chem. Phys. 124, 204511 (2006)

- $T = 0.12$ e/k_B solid-solid transition when the FCC structures give place to icosahedral packing
- $T = 0.18$ e/k_B the outer layer melts while the core remains solid
- $T = 0.35$ e/k_B the cluster melts completely

Goals

- Analysis of the LJ38 network
- Comparison of three approaches
	- the zero temperature asymptotic (the Large Deviation theory)
	- the discrete Transition Path Theory
	- a heuristic approach

New developments

- Computational algorithm for
	- finding the zero-temperature asymptotic path
	- building the hierarchy of Freidlin's cycles

Settings

Zero-temperature asymptotic

Freidlin (1977): in the case of multiple attractors the system is reduced to a discrete-space continuous-time Markov chain and its dynamics of the system is characterized by the hierarchy of cycles

In the case of gradient system (or a system with detailed balance) the hierarchy of cycles acquires a simple structure: each cycle (or macrostate) is exited via the lowest saddle adjacent to it.

The zero-temperature asymptotic pathway is defined by the following property: the highest saddle separating any two states along it (not only neighboring) is the lowest possible. We will refer to it as the minimax pathway.

The algorithm for finding the minimax path and building the hierarchy of cycles

This algorithm recursively builds a tree of minimax edges using, as a building block, the Dijkstra method with

- the cost function c_{ij} = *Vij* , if *i* and *j* are commected by an edge ∞ , otherwise $\overline{}$ ⎨ $\begin{array}{c} \hline \end{array}$ $\overline{\mathcal{L}}$

- the value function $u(j) = min$ *w* max (*k*, *l*)∈*w* V_{kl}

- and the update rule $u(j) = min\left\{u(j), max\left\{u(i), c_{ij}\right\}\right\}$

The hierarchy of cycles and the minimax pathway

Thursday, October 4, 12

The discrete Transition Path Theory

Metzner, P., Schuette, Ch., and Vanden-Eijnden, E., Multiscale Model. Simul., 7, 3, 1192-1219 (2008)

 $\overline{\mathcal{L}}$

Key concepts

- The committor function $q(i)$ = the probability to reach *B* prior to *A* starting from the state i; it solves

$$
\sum_{j\in S} L_{ij}q_j = 0, \qquad i \in S \setminus (A \cup B)
$$

\n
$$
q_i = 0, \quad i \in A, \qquad q_i = 1, \quad i \in B
$$

\n- The reactive current $f_{ij}^{AB} = \begin{cases} \pi_i(1-q_i)L_{ij}q_j, & i \neq j, \\ 0, & otherwise \end{cases}$
\n- The effective current $f_{ij}^+ = \max\{f_{ij}^{AB} - f_{ji}^{AB}, 0\} = \begin{cases} \pi_i L_{ij}(q_j - q_i), & q_j > q_i, \\ 0, & otherwise \end{cases}$

The discrete TPT methodology

• Solve the committor equation

$$
\sum_{j \in S} L_{ij} q_j = 0, \qquad i \in S \setminus (A \cup B)
$$

$$
q_i = 0, \quad i \in A, \qquad q_i = 1, \quad i \in B
$$

• Find the reactive current and the effective current

$$
f_{ij}^{AB} = \begin{cases} \pi_i(1-q_i)L_{ij}q_j, & i \neq j, \\ 0, & otherwise \end{cases} \qquad f_{ij}^+ = \max\left\{f_{ij}^{AB} - f_{ji}^{AB}, 0\right\} = \begin{cases} \pi_iL_{ij}(q_j - q_i), & q_j > q_i, \\ 0, & otherwise \end{cases}
$$

- Generate the reaction pathways
- Do statistical analysis of the reaction pathways

Transition Pathways

The dominant representative pathways

The width of the the reactive tube

The most common highest saddles

Bond-orientational order parameters

$$
Q_{l} = \left[\frac{4\pi}{2l+1}\sum_{m=-l}^{l} \left| \left\langle Y_{lm}(\theta(r),\phi(r)) \right|^{2} \right]^{1/2}\right]
$$

Ylm's are spherical harmonics, the average is taken over all bonds in cluster

A heuristic approach

 $E(w) = \sum e^{V_{ij}/T}$ (*i*, *j*)∈*w* $u(i) = \min E(w)$ *w* - the total cost along a pathway w - the value function is the minimum cost to get from A to i Analogy with electric circuits Resistance $R_{ij} = \pi_i L_{ij} = e^{V_{ij}/T}$ Electric current $I_{ij} = f_{ij}^+$ Electric potential $\varphi_i = 1 - q_i$ Two cases where the heuristic approach is exact

T is close to 0

The dominant representative pathways vs the minimum resistance pathways

 V_0

 V_0

3

0

v.

The dominant representative pathway: $<$ 0,4,5 $>$ The minimum resistance pathways: $<$ 0,1,2,5 $>$ and $<$ 0,1,3,5 $>$

 $V_0=5$, $V_1=2$, T=1 The dominant representative pathway: $<$ 0,11> The minimum resistance pathway: $<$ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 $>$

Vı

 $\overline{7}$

Minimum resistance pathways

Conclusions

- Fast and robust algorithm for computing the zero-temperature asymptotic pathway and building the hierarchy of Freidlin's cycles
- The zero temperature approach is good only for low temperatures T≤0.065, where the dominant representative pathway switches from the lowest possible highest saddle (342,354), V=4.219, to the higher saddle (3223,354), V=4.352. At T=0.065, the barrier $(342,354)$ is 65 kBT.
- At $T=0.12$, where the solid-solid transition occurs, the zero-temperature approach is no longer applicable. The transitions between ICO and FCC are still rare events, the barrier is 35 k_BT , but the temperature effects are significant.
- The heuristic approach at a given temperature tends to give an important pathway at for a lower temperature.