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Lennard-Jones clusters

Pair potential: V(r) = 4e(r -12  - r -6)
1. Wales, D. J., Energy landscapes: calculating pathways and 

rates, International Review in Chemical Physics, 25, 1-2, 
237-282 (2006) 

2.  Wales’s D. J. website contains the database for the Lennard-
Jones-38 cluster: 
     http://www-wales.ch.cam.ac.uk/examples/PATHSAMPLE/

3. Wales, D. J. and Doye, J. P. K. Global Optimization by Basin-
Hopping and the Lowest Energy Structures of Lennard-Jones 
Clusters containing up to 110 Atoms. J. Phys. Chem. A 101, 
5111–5116 (1997) 

4. Doye, J. P. K., Miller, M. A. and Wales, D. J. The double-
funnel energy landscape of the 38-atom Lennard-Jones cluster. 
J. Chem. Phys. 110, 6896–6906, (1999) 
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D. Wales’s LJ38 network
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Double-funnel of LJ38

The lowest minimum:
face-centered cubic 

truncated octahedron, 
point group Oh

The second lowest 
minimum:

incomplete icosahedron  
point group C5v

100000 minima
138888  transition states
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Critical temperatures

• T = 0.12 e/kB - solid-solid transition when the FCC structures give place to 
icosahedral packing

• T = 0.18 e/kB - the outer layer melts while the core remains solid

• T = 0.35 e/kB - the cluster melts completely

Mandelshtam,V.A.and Frantsuzov,P.A.,

Multiple structural transformations in Lennard - Jones clusters: Generic versus size-specific behavior, 

J. Chem. Phys. 124, 204511 (2006) 

Thursday, October 4, 12



Goals

• Analysis of the LJ38 network

• Comparison of three approaches

• the zero temperature asymptotic (the Large Deviation theory)

• the discrete Transition Path Theory

• a heuristic approach
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New developments

• Computational algorithm for 

• finding the zero-temperature asymptotic path

• building the hierarchy of Freidlin’s cycles
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Settings
LJ38 network: 100000 minima and 138888  transition states

A B

C

lAB = e
−(VAB−VA )/T

lBA = e
−(VAB−VB )/T

lAC = e−(VAC−VA )/T

lCA = e
−(VAC−VC )/T

lBC = e−(VBC−VB )/T

lCB = e
−(VBC−VC )/T

π i =
1
Z
e−Vi /T ,    i = A,B,C

Z = e−Vi /T
i
∑

Equilibrium probability distribution

Lij = lij ,   i ≠ j,

Lii = − lij
j≠i
∑The generator matrix

dx = −∇V (x)dt + 2T dw
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Zero-temperature asymptotic

Freidlin (1977): in the case of multiple attractors the 
system is reduced to a discrete-space continuous-time Markov chain and its dynamics 

of the system  is characterized by the hierarchy of cycles

In the case of gradient system (or a system with detailed balance)  
the hierarchy of cycles acquires a simple structure:

each cycle (or macrostate) is exited via the lowest saddle adjacent to it.

The zero-temperature asymptotic pathway is defined by the following 
property: the highest saddle separating any two states along it (not only 

neighboring) is the lowest possible. 
We will refer to it as the minimax pathway.
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The algorithm for finding the minimax path and 
building the hierarchy of cycles

This algorithm recursively builds a tree of minimax edges 
using, as a building block,  the Dijkstra method with 

 - the cost function

 - the value function 

 - and the update rule

cij =
Vij , if i and j  are commected by an edge
∞, otherwise

⎧
⎨
⎪

⎩⎪

u( j  ) = min
w

max
(k , l )∈w

Vkl

u( j  ) = min u( j  ),max u(i),cij{ }{ }
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The hierarchy of cycles and the minimax pathway
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The discrete Transition Path Theory

Metzner, P., Schuette, Ch., and Vanden-Eijnden, E., 
Multiscale Model. Simul., 7, 3, 1192-1219 (2008) 

Key concepts
- The committor function q( i ) = the probability to reach B prior to A starting 
from the state i; it solves 

- The reactive current

- The effective current

fij
AB =

π i (1− qi )Lijqj , i ≠ j,
0, otherwise

⎧
⎨
⎪

⎩⎪

fij
+ = max fij

AB − f ji
AB ,0{ } = π iLij (qj − qi ), qj > qi ,

0, otherwise

⎧
⎨
⎪

⎩⎪

Lijqj = 0,
j∈S
∑ i ∈S \ (A∪ B)

qi = 0, i ∈A, qi = 1, i ∈B
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The discrete TPT methodology

• Solve the committor equation

• Find the reactive current and the effective current

• Generate the reaction pathways

• Do statistical analysis of the reaction pathways

Lijqj = 0,
j∈S
∑ i ∈S \ (A∪ B)

qi = 0, i ∈A, qi = 1, i ∈B

fij
AB =

π i (1− qi )Lijqj , i ≠ j,
0, otherwise

⎧
⎨
⎪

⎩⎪
fij
+ = max fij

AB − f ji
AB ,0{ } = π iLij (qj − qi ), qj > qi ,

0, otherwise

⎧
⎨
⎪

⎩⎪
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Transition Pathways

T=0.05
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T=0.12

T=0.15
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The dominant representative pathways

T=0.05 T=0.12 T=0.15
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The width of the the reactive tube

T=0.05

T=0.12

T=0.15
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The most common highest saddles
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Bond-orientational order parameters

Ql =
4π
2l +1

Ylm (θ(r),φ(r)
2

m=− l

l

∑⎡
⎣⎢

⎤
⎦⎥

1/2

Ylm’s are spherical harmonics,
the average is taken 

over all bonds in cluster 
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A heuristic approach

E(w) = eVij /T
(i, j )∈w
∑

u(i) = min
w
E(w)

- the total cost along a pathway w

- the value function is the minimum cost to get from A to i

Analogy with electric circuits
Resistance           Rij  = π iLij = e

Vij /T

Electric current    Iij   = fij
 +

Electric potential  ϕi   = 1− qi

Two cases where the heuristic approach is exact
(1) (2)

T is close to 0
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The dominant representative pathways vs 
the minimum resistance pathways

V0=4, V1=3, V2=1, T=1

The dominant representative pathway: 
<0,4,5>

The minimum resistance pathways:
<0,1,2,5> and <0,1,3,5>

V0=5, V1=2,  T=1
The dominant representative pathway: 

<0,11>
The minimum resistance pathway:

<0,1,2,3,4,5,6,7,8,9,10,11>
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Minimum resistance pathways

0≤T≤0.105

0.11≤T≤0.18
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Conclusions

• Fast and robust algorithm for computing the zero-temperature asymptotic pathway 
and building the hierarchy of Freidlin’s cycles

• The zero temperature approach is good only for low temperatures T≤0.065, where 
the dominant representative pathway switches from the lowest possible highest 
saddle (342,354), V=4.219, to the higher saddle (3223,354), V=4.352. At T=0.065, 
the barrier (342,354) is 65 kBT. 

• At T=0.12, where the solid-solid transition occurs, the zero-temperature approach is 
no longer applicable. The transitions between ICO and FCC are still rare events, the 
barrier is 35 kBT, but the temperature effects are significant.

• The heuristic approach at a given temperature tends to give an important pathway 
at for a lower temperature.
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