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Large-scale optimization of neuron arbors

Christopher Cherniak,* Mark Changizi,† and Du Won Kang‡
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~Received 21 July 1998!

At the global as well as local scales, some of the geometry of types of neuron arbors—both dendrites and
axons—appears to be self-organizing: Their morphogenesis behaves like flowing water, that is, fluid dynami-
cally; waterflow in branching networks in turn acts like a tree composed of cords under tension, that is, vector
mechanically. Branch diameters and angles and junction sites conform significantly to this model. The result is
that such neuron tree samples globally minimize their total volume—rather than, for example, surface area or
branch length. In addition, the arbors perform well at generating the cheapest topology interconnecting their
terminals: their large-scale layouts are among the best of all such possible connecting patterns, approaching 5%
of optimum. This model also applies comparably to arterial and river networks.@S1063-651X~99!16205-6#

PACS number~s!: 87.19.2j, 87.10.1e
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Brains do not grow like crystals. However, some of t
architectures of a variety of types of neuron arbors seem
be similarly self-structuring. This can be predicted by
simple fluid-mechanical model, where the neural trees
represented in terms of a laminar flow of fluid through
corresponding tube network. The model applies well, for
ample, to planar arbors of mammalian retinal ganglion a
amacrine cell dendrites, and of both intrinsic and extrin
thalamic axons. Local branch-junction geometry conforms
a fluid-dynamical model, with branch diameters set to mi
mize the internal wall drag of the fluid flow, which in tur
sets branch angles. The complete tree structure thereby
forms to a fluid-static model, as if its hypothetical bran
tubes were all ‘‘inflated,’’ with the resulting vector
mechanical system behaving like a network under tens
This fluid-mechanical model predicts that a given tree will
stretched or embedded in the minimum-volume configu
tion connecting its terminals; neuroanatomical observatio
in fact, support this conclusion. Furthermore, among
many alternative possible topologies, the actual topologie
these arbors are close to the minimum-volume ones.

The neuron arbors fit this large-scale model almost
well as nonliving tree structures such as river drainage
works, and also blood vessel anatomy~Ref. @1# reviewed the
wide range of non-neural arborizations occurring in natu!.
This ‘‘neural fluid mechanics’’ provides a first approxim
tion of an explanation of how a ‘‘save wire’’ generative ru
@2# for network wiring optimization in the brain is in fac
implemented for one aspect of neuroanatomy. Some of
significance of such an account, for instance, concerns
complex biological structure can emerge ‘‘for free’’ direct
from simple physical phenomena@1–5#. Such self-
optimizing tree structures might provide an enriched mil
for ‘‘neuromorphs’’—artificial neuronlike signal processin
elements@6#—that could grow their own networks.

STEINER TREE

The simplest forms of the core tree-optimization conc
here have been studied at least since Fermat and Torr
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~see, e.g., Ref.@7#!. The relevant classical version of th
Steiner tree problem is the following: Given a set of fix
nodes, find the set of arcs or branch segments that inter
nects all nodes and has the shortest total length. The resu
network will always constitute a tree. When it is permitted
have branch junctions only at node sites, it is aminimal
spanning tree; when branchings may also occur at loci th
are not nodes, it constitutes aSteiner tree. The total length of
the Steiner tree for a set of nodes is equal to or less than
length of the minimal spanning tree for the nodes~with a
maximum possible improvement of about 13%@8#!. For ex-
ample, Figs. 1~A! and 1~B! show, respectively, a minima
spanning tree and a Steiner tree for five nodes on a plane
Steiner tree has three internodal junctionsj, and is about 4%
shorter than the minimal spanning tree.

Steiner tree is a combinatorial optimization problem: T
exact solution of a problem instance in general requires~a!
generating all possible alternative connecting patterns, or
pologies, among the given nodes~see, e.g., Fig. 6 below!;
and~b! for each topology, finding its minimum-cost embe
ding, that is, the best positioning of its internodal junction
Steiner tree—unlike minimal spanning tree—has be
proven to be an NP-complete problem, indeed, NP h
@9,10#. The concept of NP completeness~‘‘nondeterministic
polynomial-time completeness’’! need not be defined here
but it is strongly conjectured to be linked with a proble
being intrinsically computationally intractable, i.e., not ge
erally solvable without an exhaustive search of all possi
solutions. Because the number of possibilities—topolog

FIG. 1. Two classical models of tree optimality:~A! Minimal
spanning tree, and~B! Steiner tree, for five nodes on a plane su
face. The Steiner tree has internodal junctionsj; it is therefore
shorter than the minimal spanning tree, but much more comp
tionally costly to construct. The Steiner tree concept in fact app
to neuron arbors, but with the cost measure as the total tree volu
rather than the total tree length.
6001 ©1999 The American Physical Society
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FIG. 2. Optimization analysis of a five-terminal subtree from the dendritic arbor of ana ganglion cell in rabbit retina.~A! A quadrant of
the original camera lucida drawing containing the subtree~after Ref.@13#, p. 29!; soma is in the upper right corner. ‘‘Leaf terminals’’ of th
analysis are boxed~note that one of them is not a branch termination!; the ‘‘root terminal’’ is at soma.~B! Wireframe representation of th
actual tree, with branch segments straightened between loci of terminals and internodal junctions. The labels give the diameters a
the branch segments via the power law for the laminar-flow valuep53.00 ~with correction for branch bend in; see text!. ~C! Optimal
~re!embedding of the topology of the actual tree, with respect to the total volume cost, via the STRETCH algorithm. This minimum-
embedding of the actual topology is 1.06% cheaper than the volume of the actual tree in~B!. ~D! Optimal embedding of the optimal topolog
for the given terminal loci, with respect to volume cost. It can be seen to differ from the actual topology of~A!–~C!. It is 2.64% cheaper in
volume than the actual topology in its actual embedding in~B!. ~E! Optimal embedding of the optimal topology, with respect instead to
total tree surface area. The actual vs optimal error is now 27.22%, much greater.~F! Optimal embedding of the optimal topology, wit
respect to the total tree length. The actual vs optimal error is now 60.58%, even greater.@Some junction sites of~E! and~F! are identical with
terminal sites.# Thus this dendritic arbor best fits a minimum-volume model.
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in the Steiner tree case—combinatorially explodes as the
of a problem-instance grows~e.g., a ten-node tree has ov
two million Steiner topologies!, such brute-force searche
are extremely computationally costly. The largest unc
strained classical Steiner tree problems solvable at the en
the last decade had only 30 nodes@11#, and today have abou
100.

The basic question of the goodness of fit of the Stei
tree concept to actual neuroanatomy is the following:
dendrites or axons form optimized Steiner trees interconn
ing the cell body with a set of synaptic loci@1,12#? However,
a typical dendritic or axonic arbor has thousands of synap
a node set of unfeasible size. Instead, the analysis be
treats the hierarchically next-highest-level arbor eleme
the branch terminations, as the ‘‘leaf nodes’’ to be econo
cally interconnected with each other, and the ‘‘root node’’
origin ~e.g., the cell body!: for example, Fig. 2~A! shows one
‘‘bough’’ portion of the dendritic arbor of ana ganglion cell
in rabbit retina @13# with three such branch-terminatio
leaves. It should be noted that the fluid-mechanical acco
here implies that the leaf nodes are not target sites fixe
advance; rather, as the system is ‘‘inflated,’’ positions of
branch terminations shift into vector-mechanical equil
rium. The optimization thesis is that the resulting arbor i
Steiner tree. The account here is thus consistent with con
tional conceptions of dendritic arbor structure as mainly ‘‘
trinsically’’ driven @14#—yielding, in effect, the most eco
nomical ‘‘synapse rack’’ to receive connections. In contra
according to the conventional conception, typical axons
more ‘‘extrinsically’’ driven as their growth tips home o
their synapse targets@15#. It is interesting, therefore, that th
fluid-mechanical account here turns out to apply equally w
to some types of axon~e.g., of the reticular formation!; pos-
ze
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sibly these particular axons also are laid out by simila
intrinsic processes.

Because optimization of two-dimensional arbors is mu
better understood than that of three-dimensional ones,
analysis below concentrates on the former. The dendrite
axon trees selected as data for analysis are of highly reg
types, with relatively straight branches, and no branch cro
overs @e.g., the bough of Fig. 2~A!, as opposed to the tre
consisting of that bough with the bough to its right#. One
observation regarding network optimization is immediate
salient: A classical theorem for minimal spanning trees sta
that no branch junction can have an angle of less than
from which it follows that no node can have more than s
branches. If the soma of planar neuron arbor types suc
retinal ganglion cells is treated as such a node, and exam
are selected with approximately symmetrical dendritic arb
and with boughs of approximately equal size, this ‘‘si
branch rule’’ can be tested. Peichl, Ott, and Boycott@16#
includes relevanta ganglion cells of 13 mammalian specie
all somata receive six or less dendrite branches, with m
5.15 ~60.80!. The six-branch rule was similarly confirme
without exception by thea ganglion cells from rabbit retina
by Peichl, Buhl, and Boycott@13#.

LOCAL Y TREES

Fluid dynamics. The classical Steiner tree concept cann
be applied further to natural tree structures because, w
the usual Steiner tree formalism treats all segments as eq
typically trunks of natural trees—living and nonliving—hav
greater diameter than their branches. The concept of avari-
ably weightedSteiner tree is therefore required, where se
ments need not have uniform cost per unit length. We be
with the local analysis of single internodal junction ‘‘Y
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PRE 59 6003LARGE-SCALE OPTIMIZATION OF NEURON ARBORS
trees,’’ the components of complex trees. First, a mode
the relation of branch costs to their trunk cost is necess
One promisingly general candidate can be drawn from fl
dynamics: Originating with Murray’s@17# work on vascular
arbors, the ‘‘cube law’’ states that, for diverging flow fro
trunk to branches at an arterial junction, tube-wall drag of
moving fluid is minimized if inside diameters of the trun
and branches fit a relationship that the cube of trunk diam
equals the sum of cubed diameters of all branches~see Fig.
3!. This derivation holds for laminar flow, that is, typically
fluid moving smoothly in tubes of one millimeter diameter
less, at velocities low enough not to induce eddy dist
bances@18#. In general, it has been well confirmed@19#.
Murray’s law generalizes to a power law

tp5b1
p1b2

p, 2<p<3. ~1!

FIG. 3. Bifurcating junction in a neuron arbor:t, trunk; b1 and
b2 , branches;j, internodal junction;u, internal branch angle. The
‘‘Y’’-tree diagram is superimposed upon a simplified outline of
junction in the data set from the dendritic arbor of ad ganglion cell
in cat retina. The neuron arbor junction trunk and branch diame
conform to the power lawtp5b1

p1b2
p , with p>3; this is a fluid-

dynamic model for the minimum internal wall drag of pumped flo
under a laminar regime through a pipe junction. In turn, the inter
branch angles of the neuron junctions conform to the ‘‘triangle
forces’’ law cosu5(wt

22wb1
2 2wb2

2 )/2wb1wb2 , with weightswn cor-
responding to cross-section areas of respective trunk and bran
this vector-mechanical model yields minimum volume of a Y-tr
junction.
f
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Qualitatively, this law expresses that the greater the expon
value, the less the required trunk diameter, relative to bra
diameters. For the greater flow rates and pipe diameter
the turbulent flow regime,p can be derived as 2.33, aga
with empirical confirmation @19#. Although constructed
originally for diverging flow at a branching, the model als
can approximate the case of converging flow. For turbul
flow in the open channels of river drainage systems~again,
both fan-out and fan-in! the power law~1! is derivable, with
simplifying assumptions, forp52.17 @20#.

Flow phenomena have long been observed in both d
drites and axons@21#, particularly during their developmen
although of course they have highly complex internal str
ture, not an unobstructed lumen. We evaluated the good
of fit of the power law for the trunk and branch diameters
the 217 neuron arbor junctions reported by Cherniak@1#. The
neuronal ‘‘tubes’’ are of 1–10-mm diameter range; hence th
predicted exponent value for the power law would be
laminar regimep53.00. As Fig. 4 shows, the data are in fa
consistent with that prediction. With mean (b1

31b2
3)/t3

51.12 (60.46), the neuron branch-junction data fit th
laminar power law almost as well as the mouse cortex 1
100-mm-diameter arteriole branch-junction data of Wa
et al. @22#, where mean (b1

31b2
3)/t351.08 (60.05). In ad-

dition, the neuron data consistently conform to the pow
law better forp53.00 than forp51.50; the latter is in fact
identical with the ‘‘32 rule’’ for motor neuron dendrite trunk
and branch diameters, derived from an electrotonus mo
@23#. The power law shows a lower error withp53.00 than
with p51.50 for each of 17 of the 20 dendrite-junctio
groups of Cherniak@1#, which is significant (p,0.01) by a
sign test.~The three groups that are exceptions fall into
particular pattern, but it should be noted that none of the
groups consisted of spinal motor neuron dendrites.! The
laminar value ofp53.00 also outperforms a ‘‘conservatio
of cross-section area’’ value ofp52.00@24# for 16 of the 20
groups (p,0.02).

Fluid statics. Without reference to a fluid-mechanica
model, a general local optimization law can be derived t
relates weights of a trunk and its two branches to
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FIG. 4. Best fit of the fluid-dynamic model for dendrite and axon Y trees. The fluid-dynamic power law relating branch diameters
diameter, for minimal wall drag of pumped flow at a junction, istp5b1

p1b2
p ~for the laminar flow regime,p53.00). The histograms are fo

the frequency distribution of values of the best-fit exponentp for 217 neuron junctions.~A! The raw data are skewed.~B! The
log10-transformed data better approximate a normal distribution~as confirmed by linear regression analysis of aQ-Q normality test!; the
inverse of the mean of log-transformed best-fit exponents is 3.09~61.61!, which approaches the laminar regime value ofp. For the 173
dendrite junctions of the total data set,p52.96 (61.54). ~The neuron junction data were described in Ref.@1#.!
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FIG. 5. ~A! Combined ‘‘fluid dynamic and static model’’ applied to isolated dendrite Y trees~junctions from Ref.@1#, p. 506!. ~1! The
fluid dynamic power law relating branch and trunk diameters for minimization of the wall drag of pumped flow istp5b1

p1b2
p ~see Fig. 4!.

~2! The fluid-static law for the minimal tree cost is cosu5(wt
22wb1

2 2wb2
2 )/2wb1wb2 , with wn the cost per unit length of a branch or trun

this is equivalent to the triangle of forces law of vector mechanics. The combined ‘‘dp & cosu’’ model employs observed branch diamete
at a junction to derive the predicted trunk diameter, then uses those three values to derive the optimal branch angle. In the above
is a minimum-volume-cost point within the interpretable 2.00–3.00 range; for a cost5volume assumption, the best-fitp value of the
combined model for 173 dendrite junctions is atp52.70. At the best fitp, the mean error~of 0.20°! between actual observed vs predict
optimal branch angles is in fact slightly less than the mean error of the fluid-static model alone using directly observed trunk d
~0.50°!. ~B! The same combined model, extended to dendrite ‘‘triads’’ of three interconnected Y trees~see Table I!, via the STRETCH
embedding-optimizer algorithm. For cost5volume, the best-fit value for five dendrite sample groups with 72 triads total is atp52.90, with
a mean actual topology error of 4.50% between the actual triad volume and minimal triad volume. The model for triads includes a c
for the observed bend-in of branches of each type~the model for Y trees did not!. See text for branch and trunk costing procedures.
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minimum-cost angleu between the branches for connecti
the trunk origin to the branch termination sites:

cosu5
wt

22wb1

2 2wb2

2

2wb1
wb2

. ~2!

~See Fig. 3.! An immediate question is, what is the weig
w—the cost per unit of length—to be minimized? As d
cussed in Ref.@1#, the hypothesis that the total volume of
junctions is minimized, rather than the surface area or len
of the tree structures, is strongly confirmed for a variety
dendrites and axons. The cosine law~2! is identical to the
‘‘triangle of forces’’ law of vector mechanics, expressing t
least-energy state of three cords fastened together at a
mon junction, with actual weights pulling each of them. If
Y tree is interpreted as a fluid-static system of flexible b
relatively inelastic-walled tubes ‘‘inflated’’ at an arbitrar
pressure, then the forces exerted on the cross-sectional
of each tube will in fact drive the junction to an energ
minimization angle that is identical with the angle for min
mization of volume~but not of surface area or of length!.
Thus, via a tug of war process, fluid statics provides
mechanism for the local optimization of arbor volume.

Since tree volume is a function of branch and trunk dia
eters, the fluid-dynamic power law and the fluid-static cos
law can be linked in a single fluid-mechanical model.
effect, a ‘‘dp & cosu’’ local model accepts the two branc
diameters at a junction and outputs the trunk diameter
the volume-minimizing branch angle. The combined mo
also implies, qualitatively, that the smaller thep value, the
smaller the branch angleu. Figure 5~A! shows that the com
bined model performs at least as well at predicting dend
junction angles as the cosine law alone~reported in Ref.@1#!,
with quite low mean errors. A discrepancy may be perceiv
between the best fitp52.96 of the power law to the den
drites ~Fig. 4!, versus the best-fit valuep52.70 of the com-
th
f

m-

t

sks

a

-
e
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e
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bined model in Fig. 5~A!; the combined modelp value falls
virtually in the middle between the 3.00 laminar regim
value and the 2.33 turbulent value. One explanation of
lower p value of the combined model is branch bend-in:
discussed below, almost all types of naturally generated
structures show some inward curvature of branches as
leave the immediate junction zone. Branch angles of
Cherniak@1# data were measured at approximately one tru
diameter from the junction zone, and so reflect some amo
of branch bend-in; observed angles will therefore be som
what lower than the most immediately local ones. As in
cated above, the best fitp will correspondingly be decreased
An estimate of the extent of branch bend-in for the Chern
@1# data, derived from the ‘‘true’’ local 2.96p value directly
based on the power law alone, and the 2.70p value of the
combined model, is 7.1°, which is consistent with the mu
greater bend-in observed for branches at ranges further f
the junction.

MULTIJUNCTION TREES

The Y trees of the above analysis can be viewed as c
ponents of more complex trees, such as ‘‘triads’’ consist
of three interconnected Y trees. However, local optimizat
does not entail global optimization. In particular, the term
nal set of a Y tree has only one possible topology, wh
larger terminal sets have an exponentially growing num
of alternative topologies~see Ref@7#, Table 1.1!. The cosine
law above expresses only the minimum-cost local emb
ding or ‘‘stretching’’ of the Y-tree topology. First, the em
bedding concept must be generalized to the global topolo
of more complex trees, with branches of varying weight,
cost per unit length.

Embedding a topology.Optimization of large-scale em
bedding can again be conceived of in terms of the idea o
tree as a system of laminar-regime tubes in a vec
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mechanical tug of war. Vector-mechanical treatment of t
networks of weight-loaded cords with as many as five int
nodal junctions appeared in work by Varignon@25#. Huang
and Kahng@26# developed for us an algorithm to derive th
minimum-total-cost embedding of a variably weight
Steiner tree, with affinities to a concept by Gilbert@27#. We
employed this algorithm in a tree embedder, STRETCH
tree such as in Fig. 2~B! is represented as an input file, spe
fying its topology ~i.e., the connections among node a
junction sites!, with coordinates of the root and leaves, a
of the observed internodal junctions, and weights of e
branch. STRETCH proceeds from junction-linked leaf pa
inward. Using the cosine law above, STRETCH finds
minimum-cost site of the internodal junction for each le
pair. It then in turn treats these internodal junctions
second-order leaves, and finds the minimum-cost junc
sites for these new ‘‘leaves.’’ The algorithm continues ba
in this way, also testing junction mergings, until it reach
the root. The output is the optimal embedding of the tr
represented as loci of the internodal junctions; Fig. 2~C! de-
picts a typical minimum-cost embedding, for volum
STRETCH can be set to minimize the total volume, surfa
area, or branch length of a tree.

Neuron arbor data were scanned from published G
and HRP camera lucida drawings. The span of complete
bors ranges well above 100mm; since branch diameters a
below 10mm, these images rarely include accurate repres
tations of branch diameter@see, e.g., Fig. 2~A!#. Given the
good confirmation described above of the laminar power
for the neuron Y trees, we instead employed it to estim
diameter costs of triad branches. Like STRETCH,
‘‘coster’’ algorithm proceeds from the leaves inward: Bran
tips are assigned a uniform cost of 1; at their junctions,
power law is used to assign cost to the trunks. Thus, forp set
at 3.00, the assigned trunk cost is not 2, but 1.26. The cos
procedure progresses iteratively back to the root node.

Observed branch bend-in was also incorporated into
model: For naturally occurring trees, if branch angles
measured at the maximum distance from the junction sit
that is, with each branch defined by the segment from
junction out to its termination~either at a leaf site or a nex
outermost junction!—the angles are consistently less th
angles measured as close as feasible to the junction p
While branches vary in sinuosity, such bend-in appears
tually as ubiquitous among dendrites and axons, living a
nonliving natural trees, as conformance to the power law
the cosine law: We have observed it for arteries and ve
plant arbors, river drainage networks~both fan-in and fan-
out!, and electric discharge tree patterns. The mean bra
bend-in for the 72 dendrite triads analyzed here is 24
~619.3!; for the 32 axon triads, it is 12.9°~624.4!. ~One
possible general explanation for all of these cases is in te
of a constant modulus of elasticity for branch walls.! Since
the power and cosine laws only apply locally, in the imm
diate junction neighborhood, the observed mean bend-in
each class of dendrites and axons was used to correct—
decrease—the laminarp value of 3.00 for predicting the
angle of the full length of the branches.@The labels in Fig.
2~B! show the assigned branch costs to a triad, with corr
tion of p53.00 by the mean branch bend-in of 25.9° for t
class of rabbita ganglion dendrites.#
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At p53.00, the observed embeddings of the 104 act
neuron triads have a mean volume cost that is 5.4
~63.80! greater than the minimum cost of the optimal em
beddings of their actual topologies.@The axon error of 5.78%
~64.56! runs somewhat greater than the dendrite error
5.05% ~63.07!.# For p instead set at the turbulent-flow
regime value of 2.33, the mean neuron error rises to 6.3
~64.96!. This difference is small but consistent: The error
3.00 runs below the error at 2.33 for seven of the eight n
ron groups; of the 104 individual triads, 68 show less erro
3.00 than at 2.33, a highly significant effect (p,0.001, r m
.0.31). For comparison, the corresponding mean emb
ding error is similar, 4.42%, for eight triads from artificiall
generated streams@28# and eight triads from the Mississipp
River delta@29#, with p at the 2.17 value derived for turbu
lent flow in open channels, as explained earlier. Withp at the
2.33 turbulent value, 24 human coronary artery triads@30#
~having a 2.45-mm mean trunk diameter! show a mean em-
bedding error of 4.49%; 20 of 24 better fit the turbulent th
laminar p value, which is again significant (p,0.01). As
noted by Cherniak@1# for local junction geometry, these
comparable errors are consistent with the hypothesis tha
global neuron arbors, like the fluid networks, are created
simple fluid-mechanical processes.

Table I shows the mean best-fit value ofp for each arbor
class, that is, thep value ~with correction for mean branch
bend-in! at which the embedding volume error of the topol
gies of the set of actual arbors~‘‘VL error’’ ! is minimized.
The first observation is that every triad group, living a
nonliving, has a best-fit valuep, 2,p,4; that is, there ex-
ists a minimum-volume cost point above 2.00 and bel
4.00 ~for the dendrite group, see Fig. 5!. The mean embed
ding error for neurons drops some to 4.80%, with the me
best-fit value p at 2.92—agreeing well with the fluid
mechanical hypothesis that the neuron arbors behave
laminar-flow-regime pipe networks. Furthermore, the lam
nar behavior is consistent: as can be seen, the mean be
value p is closer to 3.00 than 2.33 for seven of the eig
neuron groups. Finally, the volume-cost hypothesis outp
forms both the surface area and the length hypotheses fo
eight neuron groups. Similarly, for 95 of the 104 triads, th
individual best-fit minimum-error values for volume costin
are lower than the best-fit error values for surface area or
length.

To provide measures of variance, corresponding me
for the pooled individual triad data are: for the 72 dendrit
a best-fit valuep of 3.38 ~61.39!, with a volume error of
3.58%~62.82!; for the 32 axons, a best-fit value ofp of 3.20
~61.17!, with a volume error of 3.97%~63.33!; and for all
104 neuron arbors, a best-fit value ofp of 3.33~61.33!, with
a volume error of 3.70%~62.99!. While the variance here is
appreciable, conformance to the laminar over the turbu
model is consistent; independent lines of evidence conve
in supporting the laminar model—in particular, both loc
and direct measurements of branch diameters at junct
~Fig. 4!, as well as the global arbor analysis here.

Searching topologies.Finding the minimum-cost large
scale embedding of a given tree connecting a node set
not suffice for finding the optimal tree for the node set. T
best embedding of the given tree topology may in eff
constitute only a local minimum trap on the optimizatio
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TABLE I. Global optimization of neuronal and non-neuronal arbors. Each arbor sample is a ‘‘triad,’’ a tree with three inte
junctions; see Fig. 2. The mean percent error of a triad group is in terms of the cost of each actual tree compared with its corre
optimized tree@expressed as ‘‘~Actual-Optimal!/Optimal’’#. All actual vs optimal tree errors are for the best-fit value of exponentp in the
fluid-dynamic power-law model relating branch and trunk diameters at junctions: that is, thep value at which the mean embedding errors
the actual trees, for the volume cost, are lowest. That best-fit value ofp, with a correction for the observed branch bend-in angle, is gi
for each triad group. Next listed is the mean percent error of each triad’s actual topology in its actual embedding, vs the actual to
its cheapest volume-cost embedding. In addition, the performance of actual trees relative to the corresponding minimum-cost to
evaluated for the hypotheses that minimized cost is equal to total volume~VL !, surface area~SA!, and length of arbor~LG!. To find optimal
tree topologies, all 15 possible triad topologies~see Fig. 6! were searched: The mean volume cost-rank of the actual tree’s topology
the optimally embedded~Topol rank!, in comparison with the volume costs of every other topology optimally embedded is given
samples conform best to a volume-minimization model. River network triads also minimize volume comparably, which is consistent
idea that both neurons and water networks achieve such optimization by fluid-mechanical processes. In addition, optimizatio
topology gains little, compared with optimization of the embedding.

Triad
set

Actual topology Optimal topology

Best-
fit pa

VL
error

Topol
rank

VL
error

SA
error

LG
error

Neutron arbors

Dendrites
Alpha ganglion,

rabbit (n523) @13# 2.58 4.22 3.39 4.92 22.68 52.57
SD 62.96 62.54 63.30 612.52 626.61

Alpha ganglion,
cat (n512) @32# 2.83 6.09 3.58 7.64 17.64 36.15
SD 63.94 62.71 63.84 66.62 617.00

Delta ganglion,
cat (n58) @32# 2.94 5.86 2.88 7.36 16.31 33.30
SD 63.72 62.42 64.00 67.05 614.54

Parasol,
human (n521) @33# 3.33 4.45 1.43 4.59 7.25 12.42
SD 62.86 60.81 63.03 65.51 68.10

Starburst amacrine,
rabbit (n58) @34# 2.72 1.68 3.63 1.86 24.13 63.70
SD 61.03 61.92 60.93 611.77 628.02

Dendrite group means (n572) 2.90 4.50 2.82 5.21 16.79 37.22

Axons
Intrinsic, thalamus,

mouse (n58) 3.65 5.18 1.63 5.88 8.27 12.58
SD 63.02 61.77 64.48 65.87 611.12

Extrinsic, thalamus,
mouse
Cortical (n519) 2.72 5.11 2.11 5.40 11.63 19.87
SD 64.48 61.79 64.45 67.41 611.87
Ascending RF (n55) @35# 2.88 7.29 1.60 7.92 15.84 31.17
SD 65.58 60.55 65.40 68.04 617.52

Axon group means (n532) 2.98 5.47 1.91 5.92 11.45 19.81
Neuron group means (n5104) 2.92 4.80 2.54 5.43 15.15 31.86

Non-neutron arbors

Human coronary arteries
(n524) @30# 2.44 4.55 2.00 4.85 21.45 52.93
SD 63.54 61.41 63.51 69.83 622.15

River drainage network,
artificial (n58) @28# 2.54 3.87 1.38 3.94 12.19 28.85
SD 62.58 60.52 62.58 66.57 612.34

River delta,
Mississippi (n58) @29# 2.12 3.41 4.25 3.55 27.15 69.86
SD 63.77 61.83 63.82 611.37 625.42

Weight-table network
(n524) 3.00 0.06 1.25 0.21 3.53 17.34
SD 60.04 60.85 60.21 61.29 67.03

aSince each triad groupp is the best-fit value for that arbor group, thesep values have no SD. Dendrite, axon, and neuronp value means are
weighted averages of the best-fitp values of their respective groups~see text for means of pooled individual data!.
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landscape@compare, for example, Figs. 2~C! and 2~D!#. Un-
der the standard conception, a topology is the structure
remains invariant under continuous stretching transform
tions ~i.e., without tearing or joining!; two topologies are
distinct if one cannot be converted into the other by a
embedding operation. Therefore, to find the global mi
mum, every possible alternative topology interconnecting
node set must be generated and then embedded. Figu
shows the 15 possible topologies for the node set of a tr
~The triad data of Table I were sampled across all the m
types of topologies.!

We constructed a ‘‘TG→Coster→STRETCH’’ package:
First, TG is given a tree input file like that described f
STRETCH, and generates each possible alternative full
pology for the given node set. Once TG has created a
ticular such connecting pattern, the Coster program
scribed above assigns branch weights according to
specified exponent setting of the power law. The result
tree file is then sent to STRETCH to find its optimal embe
ding. Statistics are accumulated on both optimal and ‘‘pe
mal’’ optimally embedded topologies, that is, the cheap
and costliest topologies after their embeddings have b
minimized.

Performance of the optimal topologies closely parall
that of the actual topologies. Again, for every neuron gro
the volume-cost error is always considerably less than
face area-cost error, which in turn is always less than len
cost error; the neurons still appear to be minimizing volum
As can be seen in Table I, the mean volume error~at the
best-fit valuep! for actual neuron topologies of 4.80% on
increases to 5.43% for the optimal topology.@Correspond-
ingly, means for pooled individual neuron triad data sh
the same pattern, increasing from 3.70%~62.99! to 4.53%
~63.62!.# That is, perfecting the embedding of the actu
topology gains considerably more in volume cost than p
fecting the topology itself. While there are only 15 altern
tive tree topologies for a five-node set, the same ‘‘unimp
tance’’ of topology selection relative to embedding al
applies for larger node sets with much greater numbers
alternative topologies—e.g., for eight-node sets, which h
10 395 alternative topologies; and nine-node sets, wh
have 135 135 topologies~see, e.g., Figs. 7 and 8!. In addi-
tion, performance of the actual neuron topology, optima

FIG. 6. The 15 alternative possible topologies, or connect
patterns, for a ‘‘triad,’’ a five-terminal tree with three internod
junctions. Steiner tree optimization of an arbor requires not just~a!
the best embedding of the arbor’s actual topology@i.e., the lowest-
cost positioning of its internodal junctions, as in Fig. 2~C! vs 2~B!#,
but ~b! an exhaustive search of all possible topologies connec
the terminals to find the one that is cheapest when best embe
@as in Fig. 2~D! vs 2~C!#.
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embedded, relative to all other topologies appears to be
variant across the three cost measures: the mean relative
of the actual triad topology varies only slightly for the di
ferent cost measures~2.84 for volume, 2.55 for surface are
and 2.62 for length!. Finally, their similar actual topology
ranks in Table I suggest that neuron arbors are
‘‘smarter’’ than the nonliving river networks at finding th
cheapest-volume topology, this despite the well-known
modeling processes acting upon many types of dendrites
axons, such as synapse and branch pruning.

Benchmarks.Thus neuron triads minimize their volume t

g

g
ed

FIG. 7. Eight-terminal arbor of extrinsic axon~ascending reticu-
lar formation!, mouse thalamus~from Ref. @35#!. ~A! Wireframe
representation of the observed arbor. The actual topology, with
observed embedding of that topology, appears in broken lines.
optimal embedding with respect to volume minimization of the a
tual topology is superimposed in solid lines.@Branch costing is via
the power law, withp set at the best-fit value~with a branch bend-in
correction! for this arbor group in Table I.# The cost in volume of
the actual arbor exceeds that of the optimal embedding of its to
ogy by 2.20%.~B! ‘‘Best of all possible topologies’’ connecting th
given terminal loci: the optimal topology with respect to volum
optimally embedded. The cost in volume of the actual arbor
ceeds that of the optimal topology by 2.47%. Only ten of the 10 3
possible alternative topologies have lower total volume costs, w
optimally embedded, than the actual topology.

FIG. 8. Distribution of volume costs of all possible topologie
each optimally embedded, of a nine-terminal extrinsic axon arb
mouse thalamus~from Ref. @35#!. The histogram shows the usua
pattern for natural arbors, living and nonliving: the more cos
topologies are more common, the cheapest ones are the rarest.
sequently, the good topology selection of the natural arbors ca
result merely from a confound that the least costly layouts oc
most frequently. The histogram was compiled from an exhaus
search of all 135 135 alternative topologies for a nine-termi
Steiner tree, requiring about five days on a P6 400-MHz compu
The most costly optimally embedded ‘‘pessimal’’ layouts have o
about 12% greater volume than the cheapest one; in this sens
optimization, ‘‘topology does not matter.’’
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within about 5% of the corresponding optimal trees. For
ciological comparison, rectilinear Steiner trees for ve
large-scale integrated microcircuit chip layout are regar
in the industry today as well minimized if they come with
10% of optimum length~see, e.g., Ref.@7#, pp. 221–242!.
We have also noted that river networks typically are a cou
of percent closer to optimum than the neurons; since
river branch data ranges above 1-km scale, while the neu
data are at the 1-mm scale, simple measurement error may
responsible for the somewhat greater neuron optimiza
error. Table I includes a benchmark: data for a set of weig
and pulleys tree networks constructed with interconnec
force tables. In effect, these triads are ‘‘pure’’ vecto
mechanical trees, as in Varignon@25#—a type of analog
computing device for the embedding problem. Their bran
loadings were set for ‘‘volume’’ minimization, withp
53.00 for the power law relating branch and trunk costs;
loci of the internodal junctions were than ‘‘read out.’’ A
variety of topologies and leaf loadings were sampled. T
optimal-topology volume error drops by an order of mag
tude, to 0.21%; however, the topology rank improves o
moderately over some neuron and river groups.

The force-table triads also serve as a calibration of
optimization assessment procedures here. The best-p
value for their internodal junction loci does indeed turn o
to be at 3.00; also, surface area and length errors come
much greater than the volume-cost error. In addition, f
triads of conventional minimum-length Steiner trees~from
Refs. @9,11#! were scanned in and evaluated with the T
STRETCH package. For the optimal topology, the me
length error for the actual triads was 0.22%, about the sa
as the force-table error. In addition, these ‘‘near-perfe
minimum-length trees each showed markedly worse volu
and surface area errors~for example, atp53.00, the respec
tive mean errors were 7.42% and 1.56%!. Thus the proce-
dures here did in fact detect that these test samples w
minimizing length, not volume or surface area. Another ca
bration strategy is to generate the ‘‘perfect’’ minimum su
face area tree for the nodes of some actual triad, then in
test the assessment procedures on this optimum actual tr
an input. For one such minimum surface area dendrite
~at p53.00, with 16° bend-in!, the optimal-topology surface
area error was indeed only 0.000 005%, while the volu
error was 1.61%, and the length error was 0.92%.

In judging how good is ‘‘good,’’ benchmarks from th
other extreme are useful comparisons. Mean optimal volu
embedding of the ‘‘pessimal’’ topology for neuron triads—
the topology that is costliest when minimum-co
embedded—costs only 1.81% more than the correspon
actual topologies in their actual embeddings, while the o
mal embedding of the optimal topology costs 5.43% less.
again, topology makes little difference. For larger node s
for example, nine-node trees, a histogram shows the di
bution of costs of all 135 135 topologies, optimally embe
ded ~see Fig. 8!: The cheapest vs costliest topologies diff
by only ;13%, a strikingly narrow range over so many a
ternative topologies. A next question concerns how muc
at stake instead with embedding. Bad embeddings of f
neuron triad node sets were constructed ‘‘by hand,’’ un
the constraints of no branch crossovers and no intern
junctions outside the convex hull of the terminals, with
-

d

le
e

on
e
n
ts
d

h

e

e
-
y

e

t
ut
r

-
n
e

’’
e

re
-

rn
as
e

e

e

ng
i-
o,
s,
ri-
-

is
ur
r
al

junction costing atp53.00 ~corrected for the observe
branch bend-in!; each cost about twice as much in volume
the corresponding actual neuron triad. Even such an infor
approach indicates how much embedding, unlike topolo
can matter.

Finally, is the optimization behavior of larger-sized ne
ron trees similar to that of triads, i.e., five-node trees?. T
size limit of currently feasible topology searches is ni
nodes; a ten-node tree has 2 027 025 alternative topolog
As for triads, volume minimization dominates for larger tre
~mean optimal topology errors for nine-node neuron trees
10.28% volume, 14.86% surface area, and 23.07% leng!.
As for triads, an optimal topology gains relatively little im
provement over the actual topology~for the nine-node trees
the actual topology volume error is 8.19%, only slightly le
than the optimal-topology error!. Larger trees do show a pa
of salient differences from triads: The embedding volum
minimization error tends consistently to increase with no
set size, from 4.80% for triads to;8% for the nine-node
arbors. Conversely, the topology rank error of the actual t
drops sharply, from the top 10.93% for triads to 1.02%
the nine-node arbors.

The basic point here has been that major neuron a
structure appears to be self-organizing, with both dend
and axon morphogenesis behaving like flowing water. N
ron arbor anatomy fits a global volume-minimization mod
nearly as well as nonliving tree structures such as river dr
age networks. Ramo´n y Cajal observed that a developin
axon tends to grow in a straight line, as long as it does
encounter interfering environmental influences@21,31#. The
account of neuron arbor morphogenesis here can be vie
as a generalization of this idea: The default axodendritic
bor pattern, when external cues do not intervene, is
volume-minimizing embedding. This optimal-volume stru
ture is conceived to be a basic ground plan, anur arbor often
modified in complex ways—for example, as manifested
the tortuosities typical of intrinsic cortical axons.

The simple ‘‘neural fluid mechanics’’ described abo
generates this default arbor structure, in particular, bra
diameters, branch angles, and junction sites. Since river
works perform as well at topology optimization as dendri
and axons here, DNA-based mechanisms do not seem t
required. The significant role of basic properties of micro
scale fluid flow behavior in neuron arbor formation draw
attention to the idea that modulators of the fluid-mechan
milieu of the nervous system may govern aspects of its n
mal development. Modification of such properties as visc
ity or surface tension therefore may be worth investigation
for example, toward promoting connection regrowth af
injury.
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