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CHAPTER 17
Neural wiring optimization
Christopher Cherniak*
Committee for Philosophy and the Sciences, Department of Philosophy, University of Maryland,
College Park, MD, USA
Abstract: Combinatorial network optimization theory concerns minimization of connection costs
among interconnected components in systems such as electronic circuits. As an organization principle,
similar wiring minimization can be observed at various levels of nervous systems, invertebrate and
vertebrate, including primate, from placement of the entire brain in the body down to the subcellular
level of neuron arbor geometry. In some cases, the minimization appears either perfect, or as good as
can be detected with current methods. One question such best-of-all-possible-brains results raise is,
what is the map of such optimization, does it have a distinct neural domain?

Keywords: Adjacency Rule; Caenorhabditis elegans; cerebral cortex; component placement
optimization; Size Law; Steiner tree; volume minimization; wirelength minimization.
Introduction

Neuroconnectivity architecture sometimes shows
virtually perfect network optimization, rather than
just network satisficing. Long-range connections
are a critically constrained resource in the brain,
hence, there may be great selective pressure to
optimize finely their deployment. The formalism
of scarcity of interconnections is network optimiza-
tion theory, which characterizes efficient use of lim-
ited connection resources. The field matured
decades ago for microcircuit design, typically to
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minimize the total length of wire needed to make
a given set of connections among components.
For layout of neural components, such connection
minimization has been reported for the nematode
nervous system (Cherniak, 1994a), rat amygdala
and olfactory cortex (Cherniak and Rodriguez-
Esteban, 2010), cat sensory cortex, and macaque
visual cortex (Cherniak et al., 2004).
Corresponding arbor optimization also applies for
some types of dendrites and axons (Cherniak
et al., 1999).Results formore primitivenervous sys-
tems help fill in some of the evolutionary trajectory
of neural optimization phenomena.

Such optimality contrasts with the familiar pic-
ture for biological design, of only moderately
good engineering: for example, the first chapter
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of Descent of Man (Darwin, 1871) enumerated
many instances of rudimentary structures in
humans that are no longer in use (although the
neural examples are in fact functional). Instead,
it is almost as if neural connections had an
unbounded cost. When this simple “save wire”
idea is treated as a generative principle for nervous
system organization, it turns out to have some
applicability: To an extent, across evolutionary
levels, wire-minimization yields brain structure.

A caveat is that, in general, network optimiza-
tion problems are easy to state, but vastly
computationally costly to solve exactly. These con-
nection cost-minimization problems are a major
hurdle of microcircuit design and are known to
be NP-complete (nondeterministic polynomial
time complete), that is, de facto intractable (Garey
and Johnson, 1979). Computation costs of solving
problems of comparatively small size typically
grow exponentially, to cosmic scale: exactly solving
some could consume more space and/or time than
exists in the known Universe. The archetypal
example of an NP-complete problem is Traveling
Salesman: For a given set of points on a map,
simply find the shortest roundtrip tour.
Neuron arbor optimization

The basic concept of an optimal tree is as follows:
Givenasetof loci in3Dspace, find theminimum-cost
tree that interconnects them, for instance, the set of
interconnections of least total volume. If branches
are allowed to join at points other than the given
terminal loci (the“leaves”and“root”), theminimum
tree is of the most economical type, a Steiner tree.
If the synapse sites and origin of a dendrite or axon
are treated in this way, optimization of the dendrite
or axon can be evaluated. Approximately planar
arbors in 2D space are simpler to analyze. The most
important feature of naturally occurring arbors—
neuronal, vascular, plant, water drainage networks,
etc.—is that, unlike much manufactured circuitry,
for each internodal junction, trunk cost (e.g., diame-
ter) is higher than branch costs.
Local trees

When such Y-junctions are examined in isolation,
positioning of the junction sites shows minimiza-
tion of total volume cost (vs. surface area or
length) to within about 5% of optimal (Cherniak,
1990, 1992; 7 of 25 datasets were from primates).
In turn, the relation of branch diameters to trunk
diameter fits a simple fluid-dynamical model for
minimization of walldrag of internal laminar flow
in a tree of tubes: Dendrites and axons act like
flowing water.
Global trees

This Y-tree cost-minimization constitutes local
optimization. Only one interconnection pattern
or topology is involved. Such small-scale optimi-
zation does not entail larger-scale optimization,
where local trade-offs are often required. When
more complex portions of a total arbor are ana-
lyzed, optimization becomes a global problem,
with an exponentially exploding number of
alternative possible interconnection topologies.
For example, a nine-terminal tree already has
135,135 alternative topologies, each of which
must be generated and costed to verify the best
solution (see Fig. 1). Neuron arbor samples, each
with three internodal Y-junctions and a distribu-
tion of different topologies, minimize their vol-
ume to within about 5% of optimal (Cherniak
et al., 1996, 1999). This optimality performance
is consistent for dendrites (rabbit retina ganglion
and amacrine cells, and cat retina ganglion cells)
and also for some types of axons (intrinsic and
extrinsic mouse thalamus). One of eight datasets
was from primates.
Topology

The pattern for natural arbors, living and nonliv-
ing, is that more costly topologies are more
common, cheapest ones are rarest. However, the
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Fig. 1. Actual versus optimal neuron arbors, mouse thalamus extrinsic axon, ascending reticular formation. The arbor best fits a
minimized-volume model. (a) Wireframe representation of eight-terminal subtree of observed arbor. Actual tree, with actual
topology in its actual embedding, appears in broken lines. Optimal embedding with respect to volume minimization of the
actual topology is superimposed in solid lines. The cost in volume of the actual arbor exceeds that of the optimized embedding
of its topology by 2.20%. (b) “Best of all possible topologies” connecting the given terminal loci: the optimal topology with
respect to volume, optimally embedded. The volume cost of the actual arbor exceeds that of the optimal topology by 2.47%.
Only 10 of the 10,395 possible alternative topologies here have lower total volume costs, when optimally embedded, than the
actual topology (reprinted with permission from Cherniak et al., 1999).
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most costly optimally embedded “pessimal”
topologies have relatively little higher cost than
the cheapest ones. In this sense, to a first approx-
imation, “topology does not matter”. Conse-
quently, neuron arbor anatomy behaves like
flowing water, and waterflow in turn acts like a
tree composed of weights and pulleys (rather than
springs). Fluid dynamics drives fluid statics, that
is, vector mechanics. Hence, “instant arbors, just
add water,” that is, neuroanatomy from physics.
Component placement optimization

Another key problem in microcircuit design
is component placement optimization (also
characterized as a quadratic assignment problem).
Given a set of interconnected components, find
the location of the components on a 2D surface
that minimizes total cost of connections (e.g.,
wirelength). A familiar example is siting of
computer chips on a motherboard. Again, this
concept seems to account for aspects of neuro-
anatomy at multiple hierarchical levels.
Why the brain is in the head is a one-compo-

nent placement problem. That is, given the fixed
loci of receptors and muscles, positioning the
brain as far forward in the body axis as possible
minimizes total nerve connection costs to and
from the brain, because more sensory and motor
connections go to the anterior than to the
posterior of the body. This seems to hold for the
vertebrate series (e.g., humans) and also for
invertebrates with sufficient cephalization to pos-
sess a main nervous system concentration (e.g.,
nematodes).
Caenorhabditis elegans

As for arbors, multiple-component problems again
generally require exponentially exploding costs for
exact solutions; for an n-component system, n!
alternative layouts must be searched. A typical
neural wiring optimization result is for placement
of the 11 ganglionic components of the nervous
system of the roundworm C. elegans, with �1000
interconnections. This nervous system is the
first to be completely mapped (Wood, 1988),
which enables fair approximation of connection
wirelengths. When all 39,916,800 alternative possi-
ble ganglion layouts are generated, the actual lay-
out turns out in fact to be the one with minimum
total wirelength (Cherniak, 1991, 1994a, 2003a).
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Some optimization mechanisms provide con-
vergent support for this finding: A simple genetic
algorithm, with wirecost as fitness measure so that
shorter wirelength worm layouts are more likely
to survive, will rapidly and robustly converge
upon the actual optimal layout (Cherniak et al.,
2002; see Fig. 2). Also, a force-directed placement
algorithm, with each connection approximated as
a weights-and-pulleys mechanism (non-Hooke’s
law, i.e., not a spring) acting between ganglion
components, attains the actual layout as a
minimum-energy state, with little local-minima
trapping (Cherniak et al., 2002; see Fig. 3). Each
of these wire-minimization mechanisms operates
top-down: that is, each proceeds from nervous
system connections to positioning of neural com-
ponents; vice versa is not necessary.

There is statistical evidence that this brain-as-
microchip framework also extends in the worm
down to the level of clustering of individual
neurons into ganglionic groups, and to soma posi-
tioning within ganglia to reduce connection costs
(Cherniak, 1994a).
Genera
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Fig. 2. A simple genetic algorithm, GenAlg, rapidly and reliably
alternatives. Fitness measure for survival is total wirelength of ind
only 10 individuals, all with reverse of actual ordering of ganglia (re
Cortex

The wiring-minimization approach can be applied
to placement of functional areas of the vastly more
complexmammalian cerebral cortex. In contrast to
the fixed character of neural development in
invertebrates such as nematodes, it is striking that
optimization also holds for malleable mammal
brains. Since wirelengths and branch patterns of
corticocortical connections are difficult to estimate,
one strategy is instead to explore a simpler
measure of connection cost, conformance of a
layout to a wire-conserving Adjacency Rule:

If components a & b are connected,
then a & b are adjacent.

Exhaustive search of all possible layouts is still
required to identify the cheapest one(s).
A promising calibration is that the actual mini-
mum-wire layouts of the nematode ganglia are
among the top layouts with fewest violations of
the Adjacency Rule. One primate cortex example
is that, for 17 core visual areas of macaque cortex,
16014012010080

tion number

finds the optimal layout of C. elegans ganglia among 11!
ividual nervous system. The initial population of this run was
printed with permission from Cherniak, 2005).



                                               Input: actual.mtx 

                   T E N S A R A M A 

Head Tail

PH   (100.000000) 
AN   (300.000000) 
RNG  (440.000000) 
DO   (506.000000) 
LA   (564.000000) 
VN   (744.000000) 
RV   (948.000000) 

VCa  (1856.000000) 
VCp  (3856.000000) 

PA   (4726.000000) 
DR   (4810.000000)
LU   (4884.000000)

0    0    1    1    2    2    3    3    4    4    5 
0    5    0    5    0    5    0    5    0    5    0  Tetrons 

Final layout popped out after:  100,000 iterations 
Tension constant = 0.010000 
Total wirecost = 87802.750000 µm    

Fig. 3. Runscreen for a force-directed placement algorithm, Tensarama, for optimizing layout of ganglia of the nematode C. elegans,
that is, minimizing total length of interconnections. This vector-mechanical simulation represents each of the roundworm’s �1000
interconnections as a weights-and-pulleys mechanism (as opposed to a spring) acting upon the horizontally movable ganglia
“PH,” “AN,” etc. Connections themselves do not appear on runscreen nor fixed components such as sensors and muscles. The
screendump here shows the final configuration of the system after 100,000 iterations (reupdate cycles for forces and locations).
The system has terminated with the global minimum-cost positioning of the ganglia (using about 8.7cm total of wire), which is
also the actual layout. In this way, physics suffices to generate this neuroanatomical structure, out of �40 million alternative
possible configurations (reprinted with permission from Cherniak et al., 2002).
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the actual layout of this subsystem ranks in the
top 10�7 layouts best fitting this adjacency cost-
ing. For 15 visual areas of cat cortex, the actual
layout ranks in the top 10�6 of all layouts
(Cherniak, 2003b; Cherniak et al., 2003, 2004;
see also Cherniak, 1991, 2003a; Young, 1992).
Other examples include rat olfactory cortex and
amygdala (Cherniak and Rodriguez-Esteban,
2010; see Fig. 4).
Size Law

In general, a Size Law seems to apply to cases
with such local–global trade-offs. If a complete
system is in fact perfectly optimized, then the
smaller the portion of it considered by itself, the
poorer the optimization appears. Or, to reverse
the reasoning:

The larger the proportion of a total optimal
system that the evaluated subsystem is,
the better its optimization.

A Size Law applies to each of the above cortex
systems (see Fig. 5). For the largest systems stud-
ied (visual, auditory, and somatosensory areas of
cat cortex), there is evidence along these lines of
optimization approaching limits of current detect-
ability by brute-force sampling techniques. A sim-
ilar Size Law pattern also appears to hold for
Steiner tree optimization of neuron arbor
topologies (cf. Fig. 1). The overall picture then is
of limited connections deployed very well, a pre-
dictive success story. The significance of ultra-fine



Fig. 4. Rat amygdala represented as a stack of slices: 3D topological interrelations among its nuclei. Fourteen contiguous core
components for optimization analysis of their layout are shown with boldface labels; immediately surrounding edge areas are in
italic. For interconnections, and successive subset sizes 1–14, see Table 2, Cherniak and Rodriguez-Esteban (2010).
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neural optimization remains an open question.
Levels of connection optimization in the nervous
system seem unlike levels of optimization else-
where in organisms.
Related optimization results

Some other recently reported instances of
biological network optimization provide perspec-
tive on the above neural optimization cases. For
example, an amoeboid organism, the plasmodium
of the slime mold Physarum polycephalum, is
capable of solving a maze, that is, not just finding
some path across a labyrinth, but a shortest path
through it to food sources (Nakagaki et al.,
2000). Generating such a minimum-length solu-
tion is a network optimization feat for any simple
creature. However, it should be noted that this
shortest path problem is not computationally
intractable; in particular, it is not NP-complete
(Garey and Johnson, 1979). “Greedy algorithms”
can solve it and also can be implemented as
simple vector-mechanical “tug of war” processes.
Nonetheless, that a slime mold can optimize
a path through a network converges with
observations of network optimization in nervous
system anatomy. The latter results entail solution
of computationally complex (i.e., NP-complete)
problems. Such consilience lends support to the
neuroanatomical findings.

Path optimization by social insects has also
been reported. For example, wood ants (Formica
aquilonia) form complex tree structures as forag-
ing paths; however, their length by itself is not
minimized (Buhl et al., 2009). Bumblebees
(Bombus terrestris) satisfactorily solve similar
Traveling Salesman foraging problems among
food sources (Lihoreau et al., 2010), and Argen-
tine ants (Linepithima humile) can find efficient
tree structures interconnecting their nests (Latty
et al., 2011). However, the networks involved
have only five or less nodes.

Some critiques have appeared related to the
main wiring optimization result reported here
for C. elegans, that the actual layout of its ganglia
has the minimum total wirelength of all 11! alter-
native possible configurations. Since primate cor-
tex optimization results depend upon the
soundness of the nematode results, we review
the critiques of the latter. For the exhaustive
searches of worm layouts, we employed the
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Fig. 5. Rat amygdala layout optimization analysis. Plot of
optimality rankings for a series of nested subsets of the
14-area core (see Fig. 4) shown by solid line. For comparison,
a randomly generated layout with areas’ relative positions
scrambled and their interconnections preserved is similarly
analyzed for a succession of progressively larger subsets
(dashed line). A layout is scored in terms of its violations of
the Adjacency Rule. Each nested compact subset is compared
with all possible alternative layouts of that subset for
Adjacency Rule optimality. A Size Law trend—increasing
optimality with increased subsystem size—is apparent for the
actual layout, but not for its scrambled control version. For the
best-fit line for optimality of the subset series of the actual
layout, r2¼0.96, p<0.0001. Layout optimality rank for the
complete amygdala system analyzed is in top 3.9�10�6 of all
possible layouts of the full 14 areas, comparable to cat and
macaque visual cortex (Cherniak et al., 2004) (reprinted with
permission from Cherniak and Rodriguez-Esteban, 2010).
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simplest cost metric, a linear function of total wir-
elength; this cost measure also performs well for a
force-directed placement simulation, and as fit-
ness measure for a genetic algorithm (Cherniak
et al., 2002; see also Figs. 2 and 3 above).
Chklovskii (2004) proposes that wiring cost

scales instead as sum of squares of wirelengths,
and offers a quadratic minimization analysis of
ganglion position. However, among perturbation
analyses we had also performed to explore the
optimization landscape was an exhaustive search
of all 11! layouts with connection cost instead as
wirelength squared. The worm’s actual layout
then drops in rank, from optimal # 1 to
# 404,959; the actual layout costs 21% more than
the cheapest. So, compared to wirecost¼wir-
elength, a wirelength squared model does not do
well in terms of goodness of fit. And, in fact,
Chklovskii concludes that this model does not
predict actual order of all ganglia, in particular,
for the dorsorectal (DR) ganglion. (For compari-
son, see, e.g., DR position in Fig. 3 above.)

Chen et al. (2006) extend the Chklovskii
(2004) connection-minimization model from
ganglia down to the level of individual neuron posi-
tioning in C. elegans. Again, a wirelength squared
measure for connection cost is employed. At this
finer scale of anatomy, for our analyses of neuron
arbors (Cherniak et al., 1999), we had found
that such aHooke’s Lawmodel, where connections
behave like springs, similarly did not perform
well compared to a simple linear cost model.
In addition, Chen et al. principally employ a
“dedicated-wire”model, where a neuron cell body
must have a separate connection to each of its
synapses, rather than a more realistic “shared-
wire” model. One germane calibration is that we
had performed another series of exhaustive
searches of all 11! layouts without any actual
shared connections at the ganglion level. The
actual ganglion layout then drops in rank, from
# 1 to # 2,948,807; with the redundancy of these
dedicated connections, the actual layout now costs
38% more than the least costly one. Further, the
more shared connections allowed—the more per-
mitted branchings—the better the actual layout
performs.

Chen et al. (2006) calculated neuron positions
that minimize their quadratic cost function.
A caveat for such analytic solutions (see also
Chklovskii, 2004) is that, as mentioned, this opti-
mization problem is in fact NP-complete, that is,
generally not exactly solvable without exhaustive
search. (For examples of local-minimum trapping
for ganglion layouts, see Fig. 6 of Cherniak et al.,
2002 and Fig. 8.5 of Cherniak, 2009.). Chen et al.
do not address the NP-complete character of
the wiring problem. Chen et al. conclude that
some neurons show strong deviation from the
“optimal” placement model; total wiring cost of



368

Author's personal copy
the actual configuration is nearly four times
greater than that of their optimized layout. Com-
pared to the linear minimization account for the
ganglia, performance of this quadratic minimiza-
tion model for neurons turns attention back to
how connections were costed.

Contemporaneous with Chen et al. (2006),
Kaiser and Hilgetag (2006) also argued that the
actual layouts of macaque cortex areas and of
C. elegans neurons were not in fact minimum-
wirelength configurations. We focus on similar
questions that arise for this analysis of the worm
nervous system. To reiterate, in combinatorial
network optimization theory, the component
placement optimization problem is, given a set
of components and their interconnections, find a
siting of components that yields minimum total
cost; length of particular individual connections
is not an issue. Kaiser and Hilgetag report that
rearranging positions of 277 of the worm’s 302
neurons can yield an alternative network with
total wiring cost reduced by 48%. However, as
for Chen et al. (2006) above, how multiple
synapses from a neuron fiber are dealt with in
alternate placements again needs examining. As
an instance, Kaiser and Hilgetag raise the ques-
tion of accurate representation of sensory and
motor connection costs in their alternative neuron
layouts. We had performed another search of all
11! alternative ganglion layouts, with only muscle
connections deleted. The actual layout’s rank
then dropped from # 1 to # 63,161, with 10%
greater wirecost than the optimal. Again, inter-
pretation of alternate layout connection-costing
would benefit from clarification.

Thus, similar questions seem to remain about
meaningfulness of both the Chen et al. and
Kaiser–Hilgetag neuron placement optimization
results. Also relevant here is the observed neuron
wiring-minimization pattern mentioned earlier,
that if two C. elegans neurons are connected, they
tend strongly to be clustered in the same gan-
glion. Further, within ganglia, antero-posterior
siting of somata conforms significantly to a
connection-length minimization model (Cherniak,
1994a, 1995). In addition, at a yet finer scale, we
reported volume minimization of dendrite and
axon arbors (Cherniak et al., 1999).

Finally, Klyachko and Stevens (2003) have
reported that layout of functional areas of
macaque prefrontal cortex is optimal, in that the
actual placement of the 11 areas minimizes total
wirelength of their known interconnections.
Along lines of Cherniak (2003b) and Cherniak
et al. (2003, 2004), we reanalyzed the Carmichael
and Price (1996) prefrontal neuroanatomy used
here, employing instead simple conformance to
the Adjacency Rule as a connection cost measure,
as discussed above for cat and macaque visual
cortex, etc. An exhaustive search of alternative
placements showed that the actual layout of the
prefrontal areas then ranked in the best 2�10�5

of all possible alternative layouts. In our earlier
adjacency-cost analysis of macaque visual cortex,
the actual layout of a core subset of 11 areas
had ranked in the top 1.07�10�5 of all layouts.
So, connection optimization of prefrontal cortex
areas seems to agree with our results for visual
cortex.
Mapping neural optimization

Mechanisms of neural optimization are best
understood against the background that the key
problems of network optimization theory are
NP-complete; hence, exact solutions in general
are computationally intractable. For example,
blind trial and error exhaustive search for the
minimum-wiring layout of a 50-component system
(such as all areas of a mammalian cerebral cortex
hemisphere), even at a physically unrealistic rate
of one layout per picosecond, would still require
more than the age of the Universe (Cherniak,
1994b). Instead, even evolution must exploit
“quick and dirty” approximation/probabilistic
heuristics.

One such possible strategy discernible above is
optimization for free, directly from physics. That
is, as some structures develop, physical principles
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cause them automatically to be optimized. Evi-
dence was reviewed above for arbor optimization
via fluid dynamics, and for roundworm ganglion
layout optimization via force-directed placement.
The worm layout is among the most complex
biological structures known to be derivable in
this way for free, directly from simple physical
processes, without intervention by DNA
mechanisms.
For processes of component placement optimi-

zation, a chicken–egg question arises of whether
components begin in particular loci and make
connections, or instead start with their inter-
connections and then adjust their positions, or
some mix of both causal directions. However, it
is worth noting that both a force-directed place-
ment algorithm for ganglion layout and genetic
algorithms for layout of ganglia and of cortex areas
suggest that simple “connections!placement”
optimization processes can suffice.
Wiring optimization is of course subject to

many basic constraints and so cannot be ubiqui-
tous in the nervous system or elsewhere; the ques-
tion is where it does in fact occur, and how good it
is. Trade-offs of local optimality for better global
cost minimization of a total system (as Fig. 2,
Cherniak et al. (2004) illustrates) are one way in
which global optimization can be obscured.
The very fact of neural resource limitations

appears to drive “save wire” fine-grained
minimization of connections. Another part of
the functional role of such optimization may be
the picture here of the prebiotic pervading the
biotic: “physics!optimization!neuroanatomy.”
Perhaps, such an economical means of self-
organizing complex structure generation eases
transmissibility through the “genomic bottle-
neck,” that is, the limited information carrying
capacity of DNA. This constitutes a thesis of
“Non-Genomic Nativism,” that significant com-
plex biological structure is not encoded in DNA,
but instead derives from basic physical principles
(Cherniak, 2005).
Such an account is an innateness hypothesis:

There is inborn structure—not only at the
abstract cognitive level (e.g., of linguistic compe-
tence) but also at the brain hardware level. The
harmony of physics and neuroanatomy yielding
optimization is an instance of self-organizing
biological structure. For such an account, the
blank slate of the nervous system is in fact instead
preformatted—however, not via the genome, but
by the underlying physical and mathematical
order of the Universe (see Chomsky, 2005).
A division of labor holds between the genome
and this underlying order.

The “connective tissue” minimization findings
suggest optimization of neural layouts to a level
at least in the best one millionth of all layouts.
And this across much of the evolutionary
trajectory, from nematode to macaque—another
dimension of convergent confirmation of neural
optimization.

In addition, the Size Law raises the possibility of
extrapolation, that larger neural systems that take
into account more connected components may in
fact be attaining even better cost minimization.
And, in fact, Cherniak (2003b) and Cherniak
et al. (2004) include results for the 39-component
cat sensory cortex system (visual, auditory, and
somatosensory), where optimization falls in
the top one billionth of all layout possibilities. This
begins to approach some of the most precise
confirmed predictions known in science, such
as those of quantum electrodynamics (e.g., Peskin
and Schroeder, 1995). Such a best-in-a-billion
optimization model seems a predictive success
story.

Yet, against the familiar background of
biological satisficing, this neural minimizing may
appear gratuitous. There are many other compet-
ing design desiderata besides “save wire.”
Extreme connection minimization itself in turn
stands in need of further explanation. In his dis-
cussion of neural wiring economy, Sporns (2010)
concludes that brain connectivity optimization to
minimize wirecost is unlikely; instead, brain
wiring is a compromise of many factors. Such
views, of course, are familiar; Gould (1980), along
Darwinian lines, is a contemporary locus classicus
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for the idea that evolution yields improvised ad
hoc tinkering, not ideal design.

However, none of Gould’s examples are neu-
ral. Optimization to physical limits has long been
reported also for stimulus amplitude sensitivity
of sensory systems for vision, hearing, olfaction,
etc. (e.g., Cherniak et al., 2002). So, an emerging
picture might suggest exploring the conjecture of
a neural/nonneural divide for the scope of optimi-
zation prevalence. Sensors would fall just on the
neural side of such a boundary. Next questions
include, what are other domains of optimality,
and why would neural systems tend more to be
organized in this different way from many other
biological systems?
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