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Abstract. How parsimoniously is brain wiring laid out,
that is, how well does a neuron minimize costs of
connections among its synapses? Ncural optimization
of dentritic and axonic arbors can be evaluated using a
generalization of the Steiner tree concept from combi-
natorial network optimization theory. Local branch-
junction geometry of neuronal connecting structures fits
a volume minimization model well. In addition, volume
of the arborizations at this neighborhood level is signifi-
cantly more strongly minimized than their length, signal
propagation speed, or surface arca. The mechanism of
this local volume optimization rescmbles those involved
in formation of nonliving tree structures such as river
junctions and electric-discharge patterns, and appears
to govern initial nerve growth-cone behavior through
vector-mechanical energy minimization.

Introduction

For recent models of massively interconnected and
parallel computation in the brain, a natural question
concerns how well available neural connectivity is actu-
ally deployed. Real-world neuron fibers are not infi-
nitesimally thin wires, but rather a limited resource for
the intensive connectivity demands of massively parallel
circuitry. Applying concepts from combinatorial net-
work optimization theory to neuroanatomy, looking at
“trees in the brain,” reveals that the branch-junction
geometry of the dendritic and axomic structures that
interconnect a neuron’s synapses conforms well to a
local optimization model. What is most strongly mini-
mized at the individual junction level is total volume of
the arborizations, rather than connection length, signal
propagation speed, or surface area. Supporting data
comes from a wide range of species, developmental
stages, and brain regions.

Neurons solve a generalization of a small-scale
“Steiner tree”” optimization problem about as well as a
variety of other tree-like structures throughout nature,
some of them non-living. This suggests the possibility
that the mechanism of local network optimization in

the brain may involve basic physical processes only: the
genome seems to get the anatomy of local neural junc-
tion optimization automatically and directly from
energy-minimization phenomena involving classical me-
chanics, as they apply to initial growth-cone budding
behavior in the branch junction vicinity. A basic insight
of computational complexity theory is that good local
optimization does not necessarily yield good global or
large-scale optimization, since achieving the latter tends
to be extremely computationally costly. Actual neural
network volume minimization appears to bear out this
distinction, in that longer-range neuron arbor optimiza-
tion seems not to be as good as local optimization:of
the junctions composing the arbors.

1 Network optimization

One of the main problems of network optimization
theory is: Given a set of nodes located in 3-space, find
the set of arcs (of constant cost per unit of length) that
links- all nodes and has shortest total length. If the
interconnecting network, which takes the form of a
tree, may have branch junctions only at the nodes
themselves, it is a minimal spanning tree. If the network
is permitted also to have isolated junctions not at the
node loci, it is a Steiner tree (see Fig. 1). For a given set
of nodes, total length of its Steiner tree will be equal to
or less than total length of its minimal spanning tree. In
addition, isolated junctions of Steiner trees will always
consist of three intersecting arcs or branches; bifurca-
tions, not trifurcations or greater branchings, yield the
shortest network (Georgakopoulos and Padimitriou
1987). Also, the three arcs of each junction will be
coplanar. At these isolated Steiner junctions, it can be
proved that the angles formed by each adjacent pair of
arcs must be 120° (Courant and Robbins 1969, p. 354).
It also follows that the optimizing angle will turn out to
remain unchanged for any node location lying collinear
with an arc.

A number of highly efficient exact algorithms are
known for generating minimal spanning trees; they
work well in practice today on quarter-million node
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Fig. 1. Bifurcaling junction in a neuron arbor. 7, trunk; b,, b,
branches; j, internodal junction. Intcrnal angle 6 =0, +65. The “Y-
tree” diagram is supcrimposed upon a simplified outline of a junction
in the data set from the dendritic arbor of a cat cortical stellate
neuron. (Scale: length of line segment b, = 10pum)

sets. However, the problem of finding a Steiner tree for
a given set of nodes is a member of the class of
NP-hard problems studied in computational complexity
theory (Garey and Johnson 1979). NP-hard problems
are at least as computationally costly as NP-complete
(“Nondeterministic Polynomial time-complete™) prob-
lems, of which the best known is the Travelling Sales-
man problem; even the latter are strongly conjectured
to be intrinsically computationally complex. As a prac-
tical matter, each typically is intractable, that is, exact
solutions are extremely computationally difficult be-
cause 'of the combinatorial explosion of possibilities
that appear to have to be exhaustively searched. For
example, the largest unconstrained Travelling Sales-
man problem that had been exactly solved as of the
mid-1980's had only 318 nodes (Lawler et al. 1985,
p. 14). Steiner problems of 100 nodes are beyond
current computing capabilities (Bern and Graham
1989, p. 88).

In this context, the task of optimal wiring layout of
a mammalian brain with billions of neurons may seem
of a difficulty not easy even to comprehend. Consider a
simplification of a part of the network optimization
problem for a single human cortical neuron: Given a set
of synaptic target loci fixed in 3-space (rather than,
more realistically, a set of embryologically moving
targets), the cell is to generate the axonic arborization
that connects to all these synaptic sites, and is of
minimum total length. The task as thus conceived is a
pure connectivity-minimization problem, ignoring other
functional roles and constraints of cell architecture,
such as electrophysiological signal processing. When
synapses and cell body are viewed as the only nodes in
the optimization problem, one immediately sees that
neurons do not form minimal spanning trees, since
branch junctions generally do not occur at synapses.
Instead, neurons seem to be forming arborizations that
are candidates for the more economical Steiner trees,
with isolated internodal junctions.

A typical primate cortical pyramidal neuron has
around 1,000—5,000 synapses (Cherniak 1990), so even
if human neurons were forming perfect Steiner trees,

there is at least presently no way in which we could
directly prove this. Demonstration of this optimality —
as opposed to various types of weaker probabilistic
approximation — would be computationally inacces-
sible, and so unknowable, to us. However, verifying
sufficiently small-scale local optimization of neuronal
arbors is quite computationally feasible. We therefore
first turn to the more manageable project of evaluating
maximally local minimization, namely, at individual
internodal junctions of a neuron’s arbors. One can
immediately observe that, throughout the cerebral cor-
tex, and indeed most of the central nervous system,
bifurcating and planar junctions do heavily predomi-
nate, in accordance with the optimization theorems
mentioned above.

2 Variable-cost models

The next question concerning local optimization is, do
these internodal junctions form 120" branch angles, as
specified by the theorem described above? Quite consis-
tently, they do not. Indeed, with the main cxception of
some hexagonal tessellation phenomena, nature gener-
ally — animal, vegetable, mineral — seems to abhor 120°
junctions in branching structures: For individual neu-
rons (dendrites and axons), nerve tracts, glia, blood
vessels (arterial and venous), lung bronchi, plant arbors
and their roots, corals, antlers, tissue wrinkles; rivers
(both fan-in and fan-out), geological cracks, and elec-
tric discharge patterns. Instead, there is a rough but
robust tendency toward bifurcations with an internal
angle of about half of this (see Tables 1 and 2). The
simplest explanation to begin with is that in nature,
generally not all connecting arcs are equal; in some
relevant sense, *‘trunks” (ncarer to some origin) cost
more per unit length than their branches. The earlier
120° junction theorem holds only on the assumption
that all 3 ares at internodal junctions are of equal cost
per unit length. If a trunk-arc costs more than the mean
cost of its two branch-arcs, then the cost-minimizing
solution will involve taking the 120° solution and trad-
ing off costlier trunk r in exchange for more of the
cheaper branches b,, b, (see Fig. 1). As a result, the
internal angle 6 (=6, + 6,) between the branches will
be narrowed below 120°.

This qualitative idea can be refined into a simple
function from cost per unit length of branches and
trunk to the internal angles 6,, 6, that would minimize
overall cost of the junction, conceived of by itself as a
simple *“Y”-shaped tree. A formalism of this type was
in fact derived by Murray (1926, 1927), although of
course not within the more recent network optimization
framework of the present discussion (see also Uylings
1977). The model was proposed for plant arbors and
arteries, but little quantitative data supporting empiri-
cal applicability of the model was published there or
subsequently (see Zamir 1976; Woldenberg and
Horsfield 1983; Roy 1983).

To summarize briefly the derivation of the local
optimization model: First, the total cost of such a



Y-tree is expressed as a trigonometric function of angles
8, and 8, and arc-costs. Let w, be the cost per unit
length of trunk ¢, and w,, w, be the corresponding costs
of branches b,, b, respectively. Since we are interested
not in the absolute value, but relative cost comparisons,
the total cost function ¢an be simplified by dropping
terms that remain constant with changes in 8, and 6,.
Total cost w of the Y-junction is then:

W, W,
sin 8,

wo cos 6,
sin 6, sin 8,

w

n

A plot of this total Y-tree cost index as a function
of the total internal branch angle 6 for, e.g., a symmet-
rically branched tree with trunk/mean branch cost ratio
of 1.75, indicates that there does exist a minimum total
cost, for § = 58°. In short, for a general solution, the
derivative of total cost w with respect to 0, and 0, is
taken. (See Zamir 1976 for a recent presentation of this
type of analysis.) When dw/a6,, 6, is then set equal to 0
and solved for #, and #, to find its minimum, the
cost-minimizing angles 8, and f, are given by:

2 2 2
we+ Wi — wj3
cos O, =212 (2)
2wyw, ]
wi 4+ w3 —wi
cos 8, = —r——

(3)

One point brought out by this derivation is that the
actual given distances between nodes connected by a
junction, or even the proportions involved, still do not
enter into determination of the optimizing junction
angles. Some useful lemmas follow from these formu-
las. The total internal angle 6 between branches b, and
b,, which is 0, + 8,, will minimize the cost of the
Y-junction when

2wy,

wi—wi—w3
cosf=—2——1 "2 (4)
For the special case of constant-cost arcs that we began
with above, where w, = w, = w,, this formula indeed
does yield a cost-minimizing § of 120°. Another impor-
tant special case is the symmetrical-branch junction,
where w, =w,. The above formula can then be sim-
plified, with w, and w, normalized at 1 so that w,
expresses trunk to mean branch cost ratio, to
wi—2

cos 0 5 (5)
In addition, the above general formula (4) implies that,
for maximally assymmetric junctions, where arc-weights
tend toward w, =w, with w,=0 (i.e., b, is relatively
thin), the optimizing solution is to set & = 90°. Finally,
it is interesting that if wq > (w, + w,) (so0 that no *econ-
omy of scale” is gained in trunk cost over combined
branch costs), the optimizing internal angle will be
0 =0° in effect, the cost-minimizing solution would
thereby be no trunk at all.

Are observations of actual neuroanatomy consistent
with a hypothesis that neurons in fact locally optimize
their arborizations in accordance with the above model?
Before this can be checked, an additional assumption is
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needed, regarding what is the ‘“‘cost” the neurons are
supposed to be locally minimizing. Perhaps the simplest
working hypothesis to begin with is that the cost mini-
mized is just total volume of the Y-junctions (cf. Cajal’s
qualitative “laws of protoplasmic economy” (1972, vol
I, chap 5)). Given that neuron fibers are not infinitely
fine, like geometrical line segments, the overall volume
constraints of a finite nervous system are fundamental.
Also, a widespread feature of tree-like structures in
nature, including neurons, is that some connecting
arcs — trunks — have greater volume per unit length
than others; a variable-cost arc model therefore seems a
promising starting point. (

One can immediately note some familiar, informal
qualitative neuroanatomical observations that fit such a
local optimization model. The intersection of branches
with the apical dendrite of pyramidal cells progresses
from right angles for junctions at the wide base of the
apical dendrite to more acute angles with decreasing
diameter of the tapering shaft; a similar pattern is
common for plant trunks. This phenomenon conforms
to the case above where optimal branch angle is 90° if
a branch has a relatively small diameter compared to
the trunk and the other branch of-the junction. Simi-
larly, many types of dendritic spines show strong di-
ameter assymmetry with respect to the branches from
which they sprout, and consequently tend toward 90°
junction angles. At symmetrical axon bifurcations, the
decrease in diameter from trunk to branches typically is
less than for symmetrical dendrite branchings; conse-
quently, such axon junction angles stay wider, and
closer to the constant-cost optimum of 120°, than the
dendrite junctions do.

3 Materials and methods

For this exploratory study, in order to maximize sensi-
tivity of goodness of fit tests of the model as discussed
below, the widest range of types of junctions was
sought for sampling. Data was chosen in terms of
best-quality available sources — for example, high-con-
trast micrographs of representative structures without
anatomical irregularities or evidence of distortion from
tissue fixation shrinkage. Pictures, principally published
camera lucida drawings of Golgi preparations, were
selected for a broad variety of neuron types, of animals,
and of developmental stages. Neuron pictures included
dendritic arbors of cortical pyramidal and stellate, reti-
nal ganglion, Purkinje, in vitro cultured hippocampal,
and insect cells; and cortical axonic arbors (see Table
1). Non-neuronal junctions included both living cases,
with measurements from a camera lucida drawing of an
astrocyte, from a 2 m tall eucalyptus sapling, elm tree
roots, and human retinal capillary networks (arterial
and venous); and non-living structures, with measure-
ments from a photograph of a Lichtenberg electric
discharge pattern, a river delta, and a set of erosion
gulleys (see Table 2). Branch widths were measured
from the pictures by microscope with ocular and scalar
micrometers, and, because of swelling typically found at
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Table 1. Local branch optimization law: neuronal junction observations. All arbors are dendritic, unless indicated otherwise. Values in parentheses

are number of junctions measured

Neuron junctions Mean Mean Mean
trunk/branch observed pred-obs
area ratio angle angle diff

Pyramidal

cerebral cortex.
rabbit (8) (Cajal 1972: 1, p 60} 1.64 77.8 —104
visual cortex,
human infant (8) (Cajal 1972: II, p 534) 1.87 58.4 —14.6
frontal cortex,
human infant (8) (Cajal 1972: II, p 544) 1.75 68.0 13.8
primary visual cortex,
rabbit (8) (Shkol'nik-Yarros 1971, p 143} 1.51 76.0 6.0
motor cortex,
human (7) (Shkol'nik-Yarros 1971, p 250) 1.49 71.0 14.6
primary auditory cortex,
cat (8) (Winer 1984a, p 485) 1.83 61.4 —16.4
primary visual cortex, .
macaque (8) (Valverde 1985, p 454) 1.54 65.8 15.7
hippocampus, mouse, in vitro
(8) (Banker and Waxman 1988, p 76) 1.82 61.9 —16.9
Stellate
somatosensory cortex,
mouse (4) (White 1981, p 159) 173 54.5 —-23
primary auditory cortex,
cat (8) {Winer 1984b, p 520) 1.74 70.9 —-7.8
supragericulate nucleus,
cat (8) (Winer and Morest 1983, p 26) 1.77 513 -0.3
Axonic arbor
afferent, human cortex
(11) (Lorente de No 1949, p 296) 1.37 75.1 18.0
afferent, primary visual cortex,
monkey (8) (Shkol'nik-Yarros 1971, p 63) 1.34 87.4 114
intrinsic, medial geniculate, cat
(9) (Winer and Morest 1984, p 358) 1.63 76.2 —54
bitufted neuron, primary auditory cortex,
cat (8) (Fairen et al. 1984, p 210) 1.55 94.9 —-142
recurrent, striate cortex,
macaque (7) (Valverde 1985, p 454) 1.68 80.7 —6.7
Ganglion cell, retina, .
dog (8) (Marenghi in Rodieck 1973, p 481) 1.71 48.4 139
cat (8) (Dann et al. 1988, p 1492) 1.92 56.9 —17.5
trout (8) (Collin 1989, p 155) 1.38 80.6 12.3
Purkinje,
mouse (12) (Cajal 1972: 11, p 11) 1.59 81.3 -76
30 day rat (12) (Bradley and Berry 1976, p 136) 1.58 79.3 0.9
50 day rat (12) {Berry and Bradley 1976, p 9) 66.9 10.0
Dragonfly tarva,
motor (9) (Zawarzin in Cohen 1970, p 800) 53.7 -7.2
sensory (7) (Zawarzin in Kuhlenbeck 1967, p 161) . 50.7 19.1

Cricket interneuron (15) (Nevin 1989) 1.51 81.6 1.3

Neuron means (217) 1.64 70.3° +0.6°

the immediate junction point, taken at about one to 4 Results

two trunk-diameters from the junction point. “Local”
for neurons thereby fell in the 1-10 um range. The goal
was to measure about eight “clean” junctions, typically
of a single neuron, from each neuron picture. Junctions
excluded were within half a cell body diameter of the
cell body, at synaptic spines, at final branchings where
resolution was failing as indicated by gaps in fibers, or
where irregularities such as synaptic swellings were
present. Number of junctions measured per picture
ranged from 4 to 12. For area calculation, cross-sec-
tions were assumed (except for water channels) to be
approximately circular,

An initial empirical question is whether, on the above
model, there is any possible volume optimization prob-
lem in the first place: Is the trunk-to-branch cost ra-
tio — here, the ratio of cross-sectional areas — below the
“break-even” value of 2.00 explained above? Although
individual junctions sometimes reach 2.00, Tables 1 and
2 indicate that, quite widely in nature, pooled sets of
samples of neural as well as non-neural structures sat-
isfy this condition, with a mean ratio of 1.68. Earlier
studies by Rall (1959) of neuron fiber diameters at
junctions also confirm a trunk/branch ratio below 2.00.
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Table 2. Local branch optimization law: non-neuronal junction observations. Values in parentheses are number of junctions measured. Data given

without citation was originally collected by author*

Non-neuron junctions Mean Mean Mean
trunk/branch observed pred-obs
area ratio angle angle diff

Living

Neuroglia, fibrous astrocyte (8)

(Rio Hortega in Hosokawa and Mannen 1963, p 14) 1.69 70.2 —7.2

Capillaries, human retina (Siegelman and Ozanics 1982, p 497)

arterial (5) 78.4 -3.2

venous (8) 66.1 —8.0
Eucalyptus sapling

branches (22) 1.83 64.2 -39
Elm tree

roots (8) 1.85 46.5 -23

Non-living

Lichtenberg electric discharge (8)

(Sander 1987, p 100) 1.95 48.1 —153

Delta, Colorado River (8)

(aerial photograph, Gulf of California) 1.97 51.8 0.1

Converging erosion gulleys (6)

(La Jolla, California) 1.47 68.8 15.0

Non-neuron means (73) 1.80 61.4° —3.8°

* For river delta and erosion gulley data, predictions are derived from channel widths; predictions are unaffected by specific channel width/depth
ratios, so long as they remain constant for trunk and branches at cach junction

The main question then is, how well do neuron
arbors fit the network optimization model? For satisfac-
tory direct angle measurement, the key requirement on
the above picturc set was that all elements of each
junction studied lie at least approximately in the pic-
ture-plane. This appeared achievable, since Uylings and
Smit (1975) had reported that rabbit striate cortex
pyramidal cell dendrite branchings deviated little from
planarity. It had been accomplished in some cases
through sectioning the cell so that only structures in a
relatively thin slice remained (White 1981), or through
the intrinsically rather planar global arbor anatomy of
the cell type (e.g., retinal ganglion cells and Purkinje
cells), or through representational conventions for
drawings (e.g., Cajal and Lorente de No), or through in
vitro culture of the cells on flat glass plates (e.g.,
Banker and Waxman 1988).

As shown in Table 1, mean neuronal junction angle

was 70.3°, falling far below 120°. Overall mean differ-
ence between predicted junction angle and observed
angle (the latter subtracted from the former) is small,
+0.6° for 217 neuronal junctions; for comparison,
mean predicted-observed angle difference for 73 non-
neural junctions is —3.8°. In addition, the density of
these errors for junction-groups approximates a normal
probability distribution around zero. Also, the correla-
tion was determined between mean predicted and ob-
served angles for the set of arbor samples (see Table 3):
As a variance-suppression strategy, pooled groups of
junctions sampled together — with a mean of about 8
junctions per group — were taken as the unit of analysis
(since grand means in Table 3 are means of these group
means, they diverge slightly from those in Table 1 and
2). With r =0.710, the mean predicted angles rather

strongly correlate with the mean observed angles for the
neuron arbor samples; at r = 0.857, the correlation is
somewhat higher for the non-neuron samples. If the
model fit the data perfectly — i.e., predicted = observed
values — the linear regression line here would have a
slope of 1, with y intercept at 0. In fact, the best-fit line
for the neuron samples has a shallower slope of 0.516;
the non-neuron data has a slightly steeper slope of
0.611. A calibration study by direct computer-assisted
3-D microscopy of whole-mounted cricket dendrites
(Nevin 1989) agrees with the above “by-hand” data
(see Table 1), as also does preliminary data using these
computer techniques for rat hippocampus granule cell
dendritic arbors.

Table 3. Analysis of arbor data by sample groups. Mean sample size:
8.8 junctions. See Table 1 for listing of neuron samples, Table 2 for
non-neuron samples

Neuron arbor samples {25)

Predicted (x) Observed ()

Mean 69.6° 62.2°

SD 17.4° 12.6°

Linear regression slope 0.516 y intercept 33.3°
Correlation r=0.710 p <0.001

Non-neuron arbor samples (8)

Predicted (x) Observed (»)

Mean 58.7° 61.8°

SD 16.3° 11.6°

Linear regression stope 0.611 y intercept 25.9°
Correlation r=0.857 p <001
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5 Arbor optimization

How good in fact is a mean 0.6° departure of neuron
junctions from the volume-minimizing angles? The
mean optimizing performance of neural and non-neural
samples described above seems at least comparable. In
addition, the above hypothesis that the minimized cost
is local junction volume can be compared for goodness
of fit to actual neuron data with some important alter-
native candidates. First, suppose that the cost mini-
mized instead is local junction surface area. For circular
branch cross-section of radius r, volume per unit length
of branch is nr2, while surface area is n2r. Thus, for
example, a symmetrical tree trunk/branch ratio cost of
1.75 where cost=volume would _decrease for
cost = surface area to a cost of only Vﬁ, that is to
1.32. The optimal angle @ would thereby increase by
67%, from 58° to 97°. The general picture is that
optimal branch angles for surface area minimization are
much larger than for volume minimization. Corre-
spondingly, a salient difference between performance of
the volume and area minimization models for neurons
can be seen in their mecan predicted-observed error,
which is +31.6° for the area minimization model, over
an order of magnitude greater than for the volume
model. Furthermore, the volume minimization model
consistently outperforms the area minimization model:
the mean value of thc angle errors for each arbor
sample is smaller for the volume model in all but one of
25 cases (p < 0.001, by a sign test); similarly for all
non-neuron samples ¢p < 0.01). Both neural and non-
neural samples therefore fit a volume-minimization
hypothesis significantly more closely than an area-
minimization hypothesis.

Local volume-minimization also appears to domi-
nate over the important desideratum of signal propaga-
tion-time minimization. For, suppose delay is directly
proportional to path length. We saw earlier that a
conventional constant arc-cost Steiner tree, with 120°
junctions, minimizes simple Euclidean length of the
total arbor; 120° junctions versus 60° ones save 30% of
the length w of a normalized Y-tree. All neuronal
observation sets of Table 1 clearly favor junction vol-
ume minimization over length minimization. In addi-
tion, larger fiber diameters, other things being equal,
yield higher axon conduction and dendritic graded po-
tential propagation velocities; consequently, larger-di-
ameter trunk ought even to be preferred over thinner
branches for propagation-time minimization. There-
fore, junctions actually wider than the constant arc-cost
120° should be observed for symmetrical-branch junc-
tions. But in fact they are rare: only one occurs among
the 290 junctions summarized in Tables 1 and 2.

Finally, the considerable variance in individual
junction angle predictions should be noted — as can be
seen in higher standard deviations for predicted (42.4°)
versus observed (22.3°) neuron angles, and the conse-
quent flattening of slope of the linear regression line.
While subtle “chaotic” and/or stochastic phenomena
might be involved, the simplest source of this variance
would just be in random errors of measurcment of

branch diameters that are propagated through the opti-
mization model to the predicted 0. For, the formula
makes 8 sometimes highly sensitive to branch diameter
variation: for example, where trunk and branches have
respective diameters of 18.5, 18, and 6, a less than 3%
decrease in trunk diameter yields a 50% increase in 6.
Since diameter obscrvations would be susceptible to at
least +3% error under the best conditions, the un-
avoidable error-induced variability in predicted angles
will be appreciable. (A smaller measurement bias is also
present in angle observations whenever a Y-junction
can rotate about its trunk on an axis parallel to the
picture plane; such junction rotation here would always
decrease the apparent angle.)

Goodness of fit studies for local optimization mod-
els of types similar to the one proposed here have been
reported for arteries (Zamir 1976; Woldenberg and
Horsfield 1983) and river junction geomorphology
(Roy 1983); they evaluate performance of the alterna-
tive cost assumptions of volume, surface area, required
“pumping” power, and hydrodynamic drag. However,
these studies have not yielded results that supported
one of these cost-minimization hypotheses significantly
more strongly than the others. Since each of the studies
appears to have taken individual junctions rather than
aggregated data from related junction groups as the
unit of analysis, one possible explanation for their
inconclusiveness might be that the unavoidably high
variance described above is swamping any actual
effects. An additional strategic point is that, for a given
number of observations and level of variance, the wider
the range over which the obscrvations are collected
(here, range of trunk and branch weights), the greater
will tend to be the power of the experiment; the broad
variety of junction types samplcd here would therefore
also tend 1o improve sensitivity of the goodness of fit
tests.

6 Optimization mechanisms

How in fact would neuron arbor junctions arrive at
angles that, for their branch diameters, minimize local
volume out to around a dozen pm from the junction
poini? One clue is that, as we have seen, ensembles of
neuronal and non-neuronal junctions appear o approx-
imate volume-minimizing behavior comparably well;
similarly for neuronal versus non-living ones. Since
river junctions and electric discharge patterns must be
generated by basic physical processes not mediated by
DNA code, the possibility arises that neuron junction
anatomy might stem from a similar elementary process,
where the genome in effect can exploit this simple
physical mechanism to achieve local optimization. This
suggestion is reinforced by the fact that the volume
minimization law relating branch costs and angles is
exactly equivalent to the “triangle of forces” law
(*“Lamy’s theorem,” in Thompson (1961 p. 91)) deriv-
able in vector mechanics: Let three cords correspond to
the three arcs of the network optimization problem,
with the cords fastened together at the junction point.



Each cord is pulled away from the junction by a weight
that corresponds to the cost per unit length of each
of the three network arcs. Then the angles formed
between the cords are given by the above cost-
minimization laws.

Thus, an idea worth exploring is that a wide range
of local volume-minimizing tree-forming phenomena,
from the micron to the kilometer scale, may all arise by
similar simple ‘‘tug of war” energy-minimization mech-
anisms. In the case of neurons, perhaps the simplest
model would be drawn from fluid statics. Suppose that,
at a Y-junction, some intracellular extruding pressure
exerted forces that affect branch orientation only upon
the cross-sectional disk of the trunk and each branch as
it leaves the junction joint zone; then, for any positive
intracellular pressure, forces on each element would be
proportional to its cross-sectional area, and so by the
triangle of forces law, the three arcs would go into
vector equilibrium at the volume-minimizing angle.
Such a process would yield quick convergence on the
equilibrium state; developmental and phylogenetic data
are consistent with such rapid dynamics, in that neu-
rons that are embryologically and evolutionarily more
primitive appear to conform to the optimization law
about as well as more advanced ones. An alternative
model involving instead mechanical tension cxerted on
the two branches during development by the growth
cone at each tip, as the cone’s filopodia pull it across
the substratum (cf. Bray 1987), seems less plausible for
this initial branch-budding stage, becausc the trunk
lacks a growth cone to exert the required third traction
force. (It should be mentioned that fluid-dynamic ac-
counts of observed neuronal trunk/branch cross-sec-
tional area ratios in turn can also be derived.)

7 Global optimization

A simple local network volume minimization model
turns out to fit rather well to neuroanatomical junction
observations — without introduction of, e.g., the ideas
of optimization of subtle electrophysiological signal-
processing roles for the junctions, or of the abstract
flow of information through them. One rationale for so
simple an anatomy-generating process can be seen in a
dilemma Nature confronts: Human brain wiring is
among the most complex structures known in the uni-
verse, yet its layout information must pass through the
“genomic bottieneck™ of very limited DNA informa-
tion-representation capacity (Cherniak 1988). The har-
mony of local neuroanatomy and vector mechanics
suggested by the above account would lower this hered-
itary information load by giving the genomic DNA
local network optimization automatically and compara-
tively cheaply. Indeed, similar genomically compact
structure-optimizing strategies for self-organization
may be widespread among organisms.

It is worth noting that even if a wide range of
junctions, neural and non-neural, approximate a pure
local volume-minimization model fairly well, extrapola-
tion of the model to large-scale global optimization of
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neuron arbors remains at least an open question. In the
first place, local network optimization is not a sufficient
condition for global optimization; the distinctive char-
acter of the intractability of NP-complete/hard combi-
natorial problems like Steiner tree is that exact solution
of small “local” cases can remain quite feasible, while
moderately larger “global” cascs are often surprisingly
unmanageable — even with resources of cosmic scale
(Cherniak 1986). The energy-minimization mechanism
for local optimization sketched here can only operate
where internodal junctions have already formed; some
entirely different type of process is required to solve the
distinctively combinatorial optimization problem of
where to sprout these Steiner junctions in the first place.

And in fact, a variety of direct observations at least
prima facie suggest long-range overall neuron arbor
departure from simple volume-minimizing Steiner tree
optimality. One major type of symptom is branch wig-
gle: For instance, cat intrinsic cortical axons in Winer
and Morest (1983, pp. 9, 20, 25) show double hairpin
turns. A “best of all possible brains” explanation for
such repeated zigzags and switchbacks might be that
the long-range optimization problem is really more
constrained — e.g.,. these meanders indicate that -a
branch tip must in fact navigate a dense obstacle course
around other brain structures toward its target. Even
without such a maze-running puzzie confronting each
branch, one would expect its initial local angle setting
to have to undergo later mid-course corrections — un-
less, implausibly, the neuron of origin had complete
information in advance about the locus of the ultimate
destination of the branch. Thus, local junction opti-
mization will not suffice for more global wiring prob-
lemns. As mentioned earlier, second-guessing Nature to
verify global connectivity optimization is a task of
dramatically high computational cost for human inves-
tigators; we must adopt weaker probabilistic and/or
approximation methods. Perhaps the global problem is
simply intrinsically intractable for Nature as well as
ourselves, and so even Nature must employ “quick but
dirty” heuristics (Cherniak 1991). Hence, whether the
observed apparent large-scale non-optimality is because
Nature’s agenda here involves perfected compromises
in a complex, multi-dimensional problem-space, or be-
cause Nature itself in fact must employ probabilistic/
approximation procedures, is a large topic that will
require further study.
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