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ABSTRACT

Combinatorial network optimization appears to fit well as a model of brain struc-
ture: connections in the brain are a critically constrained resource, hence their deploy-
ment in a wide range of cases is finely optimized to “save wire”. This review focuses
on minimization of large-scale costs. such as total volume for mammal dendrite and
axon arbors and total wirelength for positioning of connected neural components such
as roundworm ganglia (and also mammal cortex areas). Phenomena of good optimiza-
tion raise guestions about mechanisms for their achievement: the examples of opti-
mized neuroanatomy here turn out to include candidates for some of the most complex
biological structures known to be derivable purely from simple physical energy mini-
mization processes. Part of the functional role of such fine-tuned wiring optimization
may be as a compact strategy for generating self-organizing complex neuroanatomical
systems.

4.1. INTRODUCTION

How well can combinatorial network optimization theory predict structure of inver-
tebrate and vertebrate nervous systems? The working hypothesis explored here is that
brain connections are singularly limited, both in volume and in signal-propagation
times; therefore, minimizing costs of required connections strongly drives nervous sys-
tem anatomy. Network optimization theory is the field in computer science that has
developed formalisms of scarcity for expressing and solving problems of “saving wire.”
The question then is, how well do such concepts in fact apply to the brain? The main
technique of these studies is computational experiments, the main hurdle the cxponen-
tially exploding computational requirements of optimization searches to evaluate con-
nection-minimization of the neuroanatomy.

Good optimization findings focus attention upon possible biological mechanisms.
Network optimization problems are among the most computationally intractable
known; in general, only an exhaustive search of all possibilities can guarantee exact
solutions. However, some “quick but dirty” probabilistic/approximation procedures
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developed for microcircuit design suggest candidate models for biological mechanisms
of neuroanatomy optimization. In particular, we report positive results for neural opti-
mization via genetic algorithms and via vector mechanical energy-minimization simu-
lations. In fact, the latter models constitute an instance of self-organizing
morphogenesis of highly complex biological structure directly from simple physical
processes.

4.2. CONCEPTUAL BACKGROUND

The theoretical framework of this work grew out of methodological studies of pre-
vailing models of the agent in microcconomic, game, and decision theory (7,2). The
basic finding was that these models typically presupposed agents with unlimited com-
putational capacities, and more realistic bounded-resource models were then devel-
oped. Subsequently, the same approach was applied in computer science, to
connectionist models of massively parallel and interconnected computation that were
intended to be more neurally realistic than conventional von Neumann computational
architecture (cf [3]): again, the models tended to overestimate available resources dras-
tically—here, actual connectivity in the brain. At least initial connectionist models
often tacitly assumed ncural connections were virtually infinitely thin wires. In assem-
bling the quantitative neuroanatomy necessary for evaluating neural feasibility of
connectionist models, it became evident that a weaker but still discernible trend toward
overestimation of resources then pervaded even some neuroanatomy (4).

Thus, a bounded-resource philosophical critique of mind-brain science (“We do not
have God’s brain”) focused attention on neural connections as a critically constrained
neurocomputational resource. Through combinatorial network optimization theory, a
positive research program emerged: if actual brain connections are in severely short
supply, is their anatomy correspondingly optimized? The investigation thus falls in a
Pythagorean tradition of seeking simple mathematical patterns in observed natural
forms (e.g., /5/). In fact, minimum wiring interpretations of neuroanatomy can bc
traced back at least as far as Cajal’s qualitative “laws of protoplasmic economy” (6,7)
and have continued to receive attention (e.g., {8]).

The human brain is commonly regarded as the most complex physical structure
known in the universe. In the face of such overwhelming intricacy, neuroanatomy tra-
ditionally tended toward “descriptive geography” of the nervous system., i.e., relatively
low-level ad hoc characterization of individual neural structures. The abstractive power
of concepts from computation theory would aid in coping with the unparalleled com-
plexity of the brain. In particular, network optimization theory may provide a source
for a “generative grammar” of the nervous system, some general principles that com-
pactly characterize aspects of neuroanatomy. Of course, connection minimization is
unlikely to be ubiquitous in the nervous system; indeed, given the many other compet-
ing desiderata driving design of a brain, the striking observation is that it should hold in
even some conditions. The question, then, is characterizing where “save wire” does
and does not apply.

For example, in the Caenorhabditis elegans ganglia case sketched below in Sub-
heading 4.4.2., we reduced approximately one thousand pages of published anatomy
diagrams (9a-c) 1o a 100-page database, which, in turn, was represented as a 10-page
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connectivity matrix (see Fig. 2 in {70]), which we then computationally verified to
conform to connection-minimizing component placement optimization better than any
of the nearly 40 million alternative possible layouts (see Fig. 1). If these types of result
are confirmed, they constitute a predictive success story of recent quantitative
neuroanatomy.

4.3. NETWORK OPTIMIZATION THEORY

The theory of NP-completeness emerged around 1972 (71,1/a); the key formal con-
cept of a computational problem being NP-complete (nondeterministic polynomial-
time complete) is strongly conjectured to be linked with a problem being intrinsically
computationally intractable—that is, not generally solvable without exhaustive search
of all possible solutions. Because the number of possibilities combinatorially explodes
as the size of a problem-instance grows, such brute force searches are extremely
computationally costly. For example, a 50 component system would have 50! possible
alternative layouts, which is far more than the number of picoseconds since the Big
Bang 20 billion years ago. Many of the most important real-world network optimiza-
tion problems (e.g., the best known, Traveling Salesman) have been proven to be
NP-complete or worse in computational complexity. Steiner tree and component place-
ment optimization, problems examined here, are of this type, having been proven to be
“NP-hard™.

Steiner tree has been studied in its simplest form at least since the Renaissance
(12,13). The most relevant version of the problem is: given a set of fixed node loci, find
the set of arcs (or branch segments) between those loci that interconnects all loci and
has shortest total length. The resulting network will always constitute a tree. When it is
permitied to have branch junctions only at node sites, it is a minimal spanning tree;
when branch junctions may also occur at sites that are not nodes, it constitutes a Steiner
tree. The total length of the Steiner tree for a set of nodes is equal to or less than the
length of the minimal spanning tree for the nodes. For example, Figures 2A and B
show, respectively, a minimal spanning tree and a Steiner tree for five nodes on a
plane. The Steiner tree is about 4% shorter than the minimal spanning tree.

Since Steiner tree is a member of the class of NP-hard problems, it is not surprising
that the largest unconstrained Steiner tree problems that can currently be solved have
only approx 100 nodes (cf /74]). However, while minimal spanning trees are equal to
or longer than corresponding Steiner trees, they are not at all computationally intrac-
table; exact algorithms for them today perform well for quarter-million node sets. The
basic question of goodness of fit of the Steiner tree concept to actual neurcanatomy is:
do the dendritic and/or axonic arbors of a neuron form optimized Steiner trees inter-
connecting the cell body with a set of synaptic loci? The key idea needed for such
applicability is that for real-world trees, living and nonliving, not all segments are equal;
the concept of an optimal tree had to be extended to include variably weighted branches
and trunks (15).

Component placement optimization (“quadratic assignment problem™), the other
wiring problem focused upon here, has received the most attention in computer science
in connection with design of large scale integrated circuits (16, 16a). The problem can
be defined as: given the connections among a set of components, find the spatial layout
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Fig. 1. Distribution of wirecosts (total wirelength) of all possible layouts of ganglia of C.
elegans. A 10,000-bin histogram compiled from exhaustive search of all 39,916,800 alterna-
tive orderings of the 11 ganglia. Least costly and most costly layouts are rarest. In effect, the
search approximates a simulation of the maximal possible history of the evolution of this aspect
of the nervous system. The worm’s actual layout (Fig. 2 in [10]) is in fact the optimal one,
requiring the least total length of connecting fiber of any of the millions of possible layouts. For
comparison, the last-place, “pessimal” layout would require about 4 times as much total con-
nection fiber as the optimal one. (See [7]).

of components that minimizes total connection costs. The simplest cost-measure is
length of connections (often represented as the sum of squares of the lengths); usually
the possible positions for components are restricted to a matrix of “legal slots”. As a
simple example, Figures 3A and B diagram two of six possible configurations of com-
ponents 1, 2, and 3 in slots A, B, and C; for the connections among the components,
placement 3a requires the most total connection length and 3b the least.

Again, computation costs for the exact solution of component placement optimiza-
tion problems are of a magnitude not encountered in most bioscience computing, out-
side of gene-sequencing, and constitute one of the principal technical impediments of
this research. For n components, the number of alternative possible placements is n!
(Size of this search space is generally unaffected by whether permissible component
positions are located in 3, 2, or 1 dimensions.) Heuristic procedures that yield approx
optimal solutions can be much more feasible, but their performance (e.g., how close to
optimality are they likely to come) is not well understood.

Perhaps the most salient and daunting feature of nontrivial global optimization prob-
lems is the presence of local minima traps on the optimization landscape—that is,
parameter values that yield least costs within a subregion of the search space, but not
across the total space. For example, with regard to vector mechanical force-minimiza-
tion treatments of the above two problems: (i) the dendritic tree of Figure 4C is subop-
timal because of its topology, while Figure 4D shows the minimum cost topology; no
vector mechanical tug of war re-embedding the suboptimal topology can ever trans-
form it into the best topology; and (ii) similarly, Figurc 5 shows a vector mechanical
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A

Fig. 2. Minimal spanning tree (A) and Steiner tree (B) for five nodes on a plane surface. The
Steiner tree is shorter, but much more computationally costly to construct. Adapted from (20).

local minimum trap for the roundworm ganglion component placement problem. The
extensive modeling of cellular structures and processes in terms of compression—ien-
sion “tensegrity” by Ingber (e.g., [17,17a]) does not deal with local minima and, there-
fore, cannot account for such global optimization via evading such traps.
Correspondingly, Van Essen’s tension-based model of cortical folding, in terms of
white matter tensegrity, also does not deal with local minimum traps and, so, will not
suffice for global optimization problems of wiring minimization (15—18b).

4.4. OPTIMIZATION MECHANISMS

From evaluating how well neural structures conform to minimum wiring principles
of economical use of connections, we have gone on to seek biological mechanisms of
the observed extremely fine network optimization. The emerging picture is that, cor-
responding to “Save wire” neuroanatomy optimization results, we have found neu-
roanatomical candidates for some of the most complex biological structures shown to
be derivable purely from simple physical processes (cf [19]). This constitutes a further
stage in developing an understanding of the generative rules that yield the highly com-
plex anatomy of the nervous system.

4.4.1. Large-Scale Optimization of Dendrites and Axons

Some complex neuron arbor structure seems to be self-organizing, with no need of
evolutionary mechanisms for its creation. While the key underlying pattern is network
optimization, “Save wire” (in particular here, minimize total volume), the specific
hypothesis in this case is, neuron arbor morphogenesis behaves like flowing water (see
[20]). The volume minimizing fluid dynamic mode! yields two confirmed results: (i) it
predicts diameters of branches at junctions; and (i) from thosc diameters, branching
angles and junction loci can then be predicted. The major methodological enterprise of
the project centered on developing STRETCH—a package of algorithms for the
computationally intractable (NP-hard) task of generating optimal trees (13) with vari-
able branch-weights—as the gold standard against which to compare observed neu-
roanatomical trees.

Neural fluid mechanics is a simple fluid-dynamical model, for minimized walldrag
of pumped flow through a system of pipes, that will predict branch diameters of some
types of dendrites (e.g., of mammalian retinal ganglion cells) and axons (e.g., in rodent
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Fig. 3. Component placement optimization: two alternative placements of elements 1, 2, and
3 in positions A, B, and C. For the given interconnections, placement (A) has greater total
connection length than placement (B). Adapted from (7).

thalamus) almost as well as it predicts configuration of nonliving tree structures such
as river drainage networks. For neurons, the fluid dynamics falls in the laminar-flow vs
turbulent regime.

Waterflow in branching networks, in turn, acts like a tree composed of a weights-
pulleys-cords system (non-Hooke’s Law), that is, vector mechanically; so also do the
neuron arbors. As a result, the trees globally minimize their total volume to about 5%
of optimum for interconnecting their terminals (see Fig. 4). One unanticipated moral
that emerges is that. in a sense, “Topology does not matter”, that is, the worst or
“pessimal” connection pattern typically costs only relatively little more than the opti-
mal pattern, compared to the wide corresponding possible range of costs for embed-
ding a given topology. The conclusion here is only that this minimum volume
configuration is the default neuron arbor structure, probably often modified in many
complex ways (cf, e.g., [2]]).

4.4.2. C. elegans Ganglion Placement Optimization

We have extended the above results on large-scale optimization of individual neu-
ron arbors to the entire C. elegans nervous system. The basic picture is indeed that
vector mechanics suffices for optimization of placement of the ganglia of C. elegans.
As mentioned earlier, our prior research had found that the actual placement of the
ganglia in the worm was optimal, in that it required the least total length for the animal’s
(approx 1000) interconnections, out of roughly 40 million alternative possible gan-
glion orderings (see Fig. 1). We had also reported a related set of optimization results
for rat, cat, and macaque cortex, in terms of placement of connected Brodmann areas
that conforms to an “Adjacency Rule” (7,10,22,23}. (Nonetheless, as we have noted
(22), the majority of connections in the actual worm are not to nearby components;
therefore, merely positioning components so their connections tend to go to nearby
components will not in itself suffice to yield the minimum wirecost layout.) As men-
tioned, if this 1-in-10-million type of result is replicated, it begins to approach some of
the most precise confirmed neuroanatomy predictions (see {24, 24a]); hence, we sought
convergent support by finding feasible mechanisms for such fine-grained optimization.

We have constructed Tensarama, a force-directed placement simulator, in which
each of the worm’s connections behaves like a microweight-and-pulley system (Fig. 5
shows a screendump). Analog hardware devices of this type have been used to solve
simple (noncombinatorial) placement optimization problems for over a century (25,
25a). (Similar “mesh of springs” simulations have become a focus of current modeling
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Fig. 4. Optimization analysis of a 5-terminal subtree from dendritic arbor of an ¢ ganglion
cell in rabbit retina. (A) A quadrant of the original camera lucida drawing containing the subtree
(after {35]): soma is in upper right corner. “Leaf terminals” of the analysis are boxed (note that
one of them is not a branch termination); “root-terminal” is at soma. (B) Wireframe representa-
tion of actual tree. with branch segments straightened between loci of terminals and internodal
junctions. The labels give diameters assigned to the branch segments via the power law of the
laminar-flow model. (C) Optimal re-embedding of the topology of the actual tree, with respect
to total volume cost, via the STRETCH algorithm; this minimum volume embedding of the
actual topology is 1.06% cheaper than the volume of the actual tree in panel B. (D) Optimal
embedding of the optimal topology for the given terminal loci, with respect to volume-cost. It
can be seen to differ from the actual topology of panels A-C; it is only 2.64% cheaper in
volume than the actual topology in its actual embedding, in panel B. (E) Optimal embedding of
the optimal topology, with respect instead to total tree surface area; actual vs optimal error is
now 27.22%, much greater. (F) Optimal embedding of the optimal topology, with respect to
total tree length; actual vs optimal error is now 60.58%, even greater. Thus, this dendritic arbor
best fits a minimum volume model. Adapted from (20).

of protein folding of amino acid chains [26].) Over a wide range of initial input con-
figurations of the ganglia, our vector mechanical net outputs the actual layout via tug-
of-war, converging upon equilibrium at the actual minimum wirecost positioning of
the ganglia—without major susceptibility to local minima traps. We have also con-
structed Genalg, a genetic algorithm (cf [27]) package that stably outputs the actual
minimum wirecost placement (see Fig. 5); it is, in effect, a demonstration that evolu-
tionary processes suffice for worm wiring optimality. (A caveat on interpretation of the
vector mechanical models: while actual physical forces appear to drive neuron arbor
optimization, it is likely in the case of nematode ganglion layout that the forces in-
volved should instead be viewed more abstractly as governing natural selection pro-
cesses; neuron somata need not, in fact, move during development of the individual
organism. We have similarly argued (7) concerning the simplest neural component
placement problem, of brain positioning, that the brain’s sensory-motor connections,
of course, do not behave literally vector mechanically over evolutionary history.)

But the bottom line here once more seems to be that, in a sense, “Physics suffices™:
since no genome is required for this self-organization, some interesting limits may
thereby emerge on the Central Dogma of genetics. (Cf also the related picture regard-
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Fig. 5. GenAlg, a simple genetic algorithm. rapidly and reliably finds the optimal (minimum
wirelength) layout of C. elegans ganglia. The initial population in this run is small, 10 individu-
als, each here with a reverse ganglion ordering of that found in the actual worm; the algorithm
converges upon the minimum total wirecost layout (87,803 pm) in only 130 generations. The
evolution of wirecost shows the usual pattern: a very rapid initial improvement of fitness (about
90% during the first 20 generations), followed by a much longer slower fine-tuning phase to
optimality. Some of the random mutations cause the half-dozen brief “blips” of increased mean
wirecost of the population during the later phase. The robust performance of this genetic algo-
rithm, and also of our force-directed placement algorithm, is further converging support for the
hypothesis that the actual layout of C. elegans is in fact perfectly optimized.

ing prions [28].) A discrete-state process like a genetic algorithm is not needed to
generate highly complex types of biological structure. One rationale for nongenomic
anatomy-generating processes, as well as for such simple generative rules as “Save
Wire,” is apparent in a dilemma that nature confronts: human brain wiring is among the
most complex structures known in the universe, yet its layout information must pass
through the “genomic bottleneck™ of very limited DNA information representation ca-
pacity (3,15). The harmony of neuroanatomy and physics suggested here would lower
this hereditary information load by accomplishing nctwork optimization without re-
quired participation of the genome.

Another observation of robustness worth further study is that, for both the giobal
arbor and ganglion neural optimization problems, random noise injection (e.g., as in
simulated annealing [29]) generally was not needed to evade local minima traps—
unlike for typical network optimization problem instances.

Mapping “chaotic” optimization landscapes: we have found that both a genetic algo-
rithm like GenAlg and a force-directed placement (FDP) algorithm like Tensarama
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Input: actual.mtx

TENSARAMA

Head Tail
0 0 1 1 2 2 3 3 4 4 5
0 5 [ 5 [¢] 5 0 5 0 5 0 Tetromns

PE  (100.000000)
AN  (300.000000)
RNG (440.000000)
DO  (506.000000)
La  {564.000000)
VN  (744.000000)
RV  (1096.000000)
vca (2004.000000)
VCp (4004.000000)
PA  (4874.000000)
DR  (854.000000)
LU  (928.000000)

Final layout popped out after: 1,000,000 iterations
Tension Constant: 0.001000
Total Wirecost: 88485.250000 um

Fig. 6. Runscreen for Tensarama, an FDP algorithm for optimizing layout (minimizing total
wirecost) of C. elegans ganglia. This vector mechanical simulation represents each of the
worm’s approx 1,000 connections (cf Fig. 2 in [10]) as a weight-and-pulley (non-Hooke’s
Law) element acting upon the movable ganglia “PH”, *AN", etc. (Connections do not appear
on the runscreen, nor do fixed components such as sensors and muscles). At each iteration, the
program compules net horizontal force on each ganglion, and correspondingly updates its left/
right position; the cycle is repeated a given number of times. (Ganglion locations are in
“tetrons”, or quarter-microns, to decrease round-off errors.) The most striking feature of
Tensarama performance for the actual worm’s connectivity matrix is its comparatively low
susceptibility to local minima traps—unlike Tensarama performance for minor modifications
of the actual connectivity matrix and unlike FDP algorithms, in general, for circuit design.
However, the above screendump shows the final configuration of the system for an identified
“killer” initial configuration input of the actual matrix: Tensarama has frozen in a local mini-
mum with ganglia in positions (notably, ganglia DR and LU in head, rather than tail) that yield
a final layout wirecost of 88,485.25 um. about 0.8% more than the actual layoul. The fatal
initial layout here (ganglion ieft edges at 0 tetrons) differs only slightly from a quite innocuous
initial layout (ganglion centers at 0).

perform notably well in optimizing ganglion placement for the actual connectivity
matrix (Fig. 2 in [10]) of C. elegans. However, this good performance turns out to be
interestingly narrow-tuned: (i) adding or removing as little as a single connection (of
approx 1,000 total) in some cases can change the actual matrix into a “killer matrix”
input that is highly prone to paralyzing an FDP algorithm in local minima traps; (it)
similarly, some “killer layout” initial input positionings of the ganglia of the actual
matrix will paralyze the FDP algorithm (Fig. 6). Each of these instances of discontinu-
ous, very sharply tuned performance prima facie suggests chaotic structure (e.g., [30])
and seems worthy of systematic exploration. Each exhibits a Butterfly Effect: some
quite small changes of input conditions, but only in a limited range, yield drastic
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changes in behavior. We need to compare these natural neuroanatomical connection
matrices with some typical benchmark micro circuits (e.g., /3/]). Such studies entail
basic mapping of the optimization terrain. For instance, the “neighborhood™ around
actual layouts (i.e., the subregion of nearby layouts that differ from the actual one by
only a small number of component swaps) appears to be a particularly good one. which
is richer in lower cost layouts than randomly sampled zones.

4.5. FUNCTIONAL ROLE OF NEURAL OPTIMIZATION

Finally. a larger question: if one takes seriously the above instances of distinctively
fine-grained neural optimization, a larger question emerges: why is such extreme con-
nectivity minimization occurring? Of course, “Save wire” has obvious fitness value as
explained earlier—in reducing volume of a delicate metabolically costly tissue and in
reducing signal propagation delays in a notably slow transmission medium. For
instance, neuron volume minimization directly minimizes the significant metabolic
“pumping” costs of maintaining ion concentrations across cell membranes (32). None-
theless. such optimization nearly to absolute physical limits is only rarely encountered
in biology (for instance., human visual and auditory system amplitude sensitivities under
good conditions and the silk moth olfactorv system. which can detect single molecules
of mating pheromones [33-33b]). The usual view (e.g., [34]) is that nature cannot
afford to optimize, but instead, like any finite resource engineer, only satisfices with a
compromise among competing desiderata that is “good cnough”. Natural selection al-
most never gets to begin with a clean slate, but instead must design organisms as a
prisoner of prior evolutionary history.

Thus, the type of striking neural optimization we are observing, in itself, needs
explanation regarding its functional role: it could be a clue about basic brain mecha-
nisms that require such extraordinary connectivity minimization, and/or a sign of some
unexpectedly feasible means of attaining such optimization, and/or. as mentioned
above, part of an economical scheme for generation of complex structure. Neuroana-
tomical cases, where such optimization is not present, become as diagnostically sig-
nificant as cases where it is present. *“Why ™. thus, becomes as important as “how” here.
Attention thereby turns to issues of neural function as well as structure—in any case.
the two really mesh seamlessly. Tust as a real brain does not consist of infinitely thin
wires, its connections do not have virtually infinite signal propagation velocity. Hence,
the methodological approach we started with for brain structure volume, and the issue
of stringency of limits upon il, needs in turn to be recapitulated for brain function and
its temporal constraints.
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